Все о тюнинге авто

Open Library - открытая библиотека учебной информации. Испарение и испаряемость. Географическое распределение испарения и испаряемости (анализ карт испарения и испаряемости) Средняя испаряемость

Влагооборот

Начальным источником атмосферной влаги служит Мировой океан, с поверхности которого вода испаряется. Часть ее конденсируется в облаках и выпадает в виде в виде осадков тут же на океане, завершая малый влагооборот. Другая часть испарившейся влаги в виде водяного пара переносится на сушу, где так же конденсируется в облаках и выпадает в виде жидких или твердых осадков, просачивается в грунт, стекает в реках в океан и расходуется растениями и животными. Это звено влагооборота не замкнуто, поскольку большую часть водяного пара растения в процессе фотосинтеза разлагают на водород и кислород, а меньшую связывают, безвозвратно исключая ее из водообмена. Количественно влагооборот характеризуется водным балансом .

Водный баланс - ϶ᴛᴏ алгебраическая сумма всœех форм прихода и рас­хода влаги в атмосфере, на избранной территории или на море, на материке или океане и на земной поверхности в целом.

Осадки (Р), выпавшие на территорию, частично испаряются (Е) в атмосферу, частично стекают (R): в океан

P = E + R,

то есть осадки равны испарению плюс сток.Это и есть водный ба­ланс. Приведенное уравнение было предложено А. И. Воейковым в 1884 ᴦ.

В 1932 ᴦ. Г. Н. Высоцкий предложил уравнение, в котором испарение и сток разделœены на их составные части. Суммарное испарение Е состоит из непосредственного испарения Е н и транспирации Т:

Е = Ен + Т.

Полный сток R был расчленен на поверхностный S и подзем­ный U:

К = S + U.

В водном балансе территории принимает участие также запас или не­достаток подземных вод в прошлые годы ±W.

Сегодня формула водного баланса имеет вид:

P = Eн + T + S + U ±W

Полное уравнение водного баланса ограниченной территории включает (кроме уже перечисленных составляющих) конденсацию влаги на поверхности, поверхностный приток, подземный приток, изменение запасов воды в снежном покрове, то же в болотах, водо­забор, переброску в другие системы и возвращение воды из хозяй­ственных нужд. При помощи немногих компонентов оно отражает многообразную взаимосвязь между водой, воздухом атмосферы, почвой и растительностью.

Испарение заключается в переходе воды из жидкой или твердой фазы в газообразную и в поступ­лении водяного пара в атмосферу.

Испарение - процесс прежде всœего энергетический. Он зависит от количества тепловой энергии, которая может быть затрачена на данной поверхности в единицу времени, и определяется, следо­вательно, уравнением теплового баланса на земной поверхности. На океанах на испарение затрачивается до 90% энергии солнечной радиации.

Вторым метеорологическим условием, определяющим вели­чину испарения, является влагоемкость воздуха, степень его сухо­сти или влажности. Количественно она характеризуется дефицитом влажности, который в свою очередь зависит от температуры воздуха и в меньшей степени от ветра. Разумеется, испарение может происходить только при наличии воды. На суше это условие имеется далеко не везде и не всœегда: аридным зонам свойствен дефицит влаги, в гумидных зонахвлагиможет не хватать в отдельные периоды. В связи с этим в метео­рологии выработано понятие об испаряемости (Ец).

Испаряемость - ϶ᴛᴏ максимально возможное испарение при данных метео­рологических условиях, не лимитированное запасами влаги. То же относится к термину «потенциально возможное испарение».

Испарение принадлежит к числу важнейших процессов географической оболочки. На него расходуется большая часть сол­нечноготепла. Скрытая теплота парообразования, выделяющаяся при конденсации влаги, нагревает атмосферу, и данный источник тепла для атмосферы является основным. Испарившаяся влага поступает на материки и обеспечивает их осадками.При фазовых переходах воды происходит поглощение или выделœение тепла, а при цирку­ляции атмосферы оно перераспределяется. Один из видов испаре­ния-транспирация-принимает участие в биологических процессах и об­разовании биологической массы.

Климатическое и, особенно, биофизическое значение испаряе­мости состоит по сути в том, что она показывает иссушающую спо­собность воздуха: чем больше можетиспариться при ограничен­ных запасах влаги в почве, тем ярче выражена засушливость. В одних местах это приводит к появлению пустынь, в других - вызывает временные засухи, в-третьих, где испаряемость ничтож­на, создаются условия переувлажнения.

В Северной Европе испарение близко к своему верхнему пре­делу - испаряемости-около 100 мм в год. В зонесухих степей Юго-Востока Европы, а также в аридных областях средиземно­морских субтропиков испаряемость достигает 1200 - 1300мм, адействительное испарение вследствие недостатка влаги составля­ет только 300 мм. Дефицит влаги - разница между осадками и испаряемостью в аридных зонах составляет примерно 600-800 мм.

Максимальная испаряемость, естественно, в пустынях, особен­но в Сахаре. В центральных ее частях она превышает4500 мм.Испарение, ограниченное ничтожным количеством осадков, не превышает 100 мм в год. Здесь на испарение расходуются не только осадки, но и подземная вода, стекающая с Атласских гор и из бассейна Центральной Африки. Разница между потенциаль­ным (4500 мм) и фактическим (около 100 мм) испарением выражает степень сухости Сахары.

Наибольшее испарение (около 1 200 мм) происходит на забо­лоченных низинах Центральной Африки-в бассейне озера Чад и Верхнего Нила. Растения, обеспеченные здесь теплом и влагой, дают наибольший на Земле прирост растительной массы. В эква­ториальной Африке испаряетсяза год слой воды в 1000мм.

Испаряемость и испарение отражают и режим осадков, и ре­жим тепла. Соотношение прихода и расхода атмосферной влаги принято называть атмосферным увлажнением .

Гл а в а 8

Вода в атмосфере

Испарение и испаряемость


Вода, входящая в состав воздуха, находится в нем в газообразном, жидком и твердом состоянии. Она попадает в воздух за счет испарения с поверхности водоемов и суши (физическое испарение), а также вследствие транспирации (испарение растениями), кото­рая является физико-биологическим процес­сом. Приземные слои воздуха, обогащенные

Рис. 37. Средние годовые значения испарения с подсти­лающей поверхности (мм/год)

водяным паром, становятся легче и поднима­ются вверх. Вследствие адиабатического по­нижения температуры поднимающегося возду­ха содержание водяного пара в нем, в конце концов, становится предельно возможным. Происходит конденсация, или сублимация, во­дяного пара, образуются облака, а из них - осадки, выпадающие на землю. Так соверша­ется круговорот воды. Водяной пар в атмо­сфере обновляется в среднем примерно каждые восемь суток. Важным звеном круговорота во­ды является испарение, которое заключается в переходе воды из жидкого или твердого аг­регатного состояния (возгонка) в газообраз­ное и поступлении невидимого водяного пара в воздух.

Испарение показывает фактическое коли­чество испаряющейся воды в отличие от ис-

1 Влажный воздух немного легче сухого, так как он менее плотный. Например, насыщенный водяным паром воздух при температуре 0° и давлении 1000 мб менее плотен, чем сухой, - на 3 г/м (0,25%). При более вы­сокой температуре и соответственно большем влагосодержании эта разница увеличивается.


паряемости - максимально возможного ис­парения, не ограниченного запасами влаги. По­этому над океанами испарение практически равно испаряемости. Интенсивностью или скоростью испарения называется количест­во воды в граммах, испаряющееся с 1 см по­верхности в секунду (V=r/см2 в с). Измере­ние и вычисление испарения - трудная за­дача. Поэтому на практике испарение учитывают косвенным способом - по вели­чине слоя воды (в мм), испарившейся за бо­лее длительные промежутки времени (сутки месяц). Слой воды в 1 мм с площади 1 м равен массе воды 1 кг. Интенсивность испа­рения с водной поверхности зависит от ряда факторов: 1) от температуры испаряющей по­верхности: чем она выше, тем больше ско­рость движения молекул и большее их число отрывается от поверхности и попадает в воз­дух; 2) от ветра: чем больше его скорость, тем интенсивнее испарение, так как ветер от­носит насыщенный влагой воздух и приносит более сухой; 3) от дефицита влажности: чем она больше, тем интенсивнее испарение; 4) от давления: чем оно больше, тем меньше испарение, так как молекулам воды труднее оторваться от испаряющей поверхности.

Рассматривая испарение с поверхности поч­вы, надо учитывать такие ее физические свой­ства, как цвет (темные почвы из-за большо­го нагрева испаряют больше воды), механи­ческий состав (у суглинистых почв выше, чем у супесчаных, водоподъемная способность и интенсивность испарения), влажность (чем почва суше, тем слабее испарение). Важны и такие показатели, как уровень грунтовых вод (чем он выше, тем больше испарение), рель­еф (на возвышенных местах воздух подвиж­нее, чем в низинах), характер поверхности (шероховатая по сравнению с гладкой обла­дает большей испаряющей площадью), расти­тельность, которая уменьшает испарение с почвы. Однако растения сами испаряют мно­го воды, забирая ее из почвы с помощью кор­невой системы. Поэтому в целом влияние рас­тительности многообразное и сложное.

На испарение затрачивается тепло, в ре­зультате чего температура испаряющей по­верхности понижается. Это имеет большое значение для растений, особенно в экватори­ально-тропических широтах, где испарение уменьшает их перегрев. Южное океаническое полушарие холоднее северного отчасти по этой же причине.

Суточный и годовой ход испарения тесно связан с температурой воздуха. Поэтому мак­симум испарения в течение суток наблюдает-


ся около полудня и хорошо выражен лишь в теплое время года. В годовом ходе испарения максимум приходится на самый теплый месяц, минимум - на холодный. В географическом распределении испарения и испаряемости, зависящих прежде всего от температуры и запасов воды, наблюдается зональность (рис. 37).

В экваториальной зоне испарение и испа­ряемость над океаном и сушей почти одина­ковы и составляют около 1000 мм в год.

В тропических широтах их среднегодовые значения максимальные. Но наибольшие значения испарения - до 3000 мм отмеча­ются над теплыми течениями, а испаряемость 3000 мм - в тропических пустынях Сахары, Аравии, Австралии при фактическом испаре­нии около 100 мм.

В умеренных широтах над материками Евразии и Северной Америки испарение меньше и постепенно уменьшается с юга на север из-за снижения температур и в глубь материков ввиду уменьшения влагозапасов в почве (в пустынях до 100 мм). Испаряемость в пустынях, наоборот, максимальная - до 1500 мм/год.

В полярных широтах испарение и испаря­емость малы - 100 - 200 мм и одинаковы над морскими льдами Арктики и над ледника­ми суши.

Вода, входящая в состав воздуха, находится в нем в газообразном, жидком и твердом состоянии. Она попадает в воздух за счет испарения с поверхности водоемов и суши (физическое испарение), а также вследствие транспирации (испарение растениями), которая является физико-биологическим процессом. Приземные слои воздуха, обогащенные водяным паром, становятся легче и поднимаются вверх. Вследствие адиабатического понижения температуры поднимающегося воздуха содержание водяного пара в нем, в конце концов, становится предельно возможным. Происходит конденсация, или сублимация, водяного пара, образуются облака, а из них – осадки, выпадающие на землю. Так совершается круговорот воды. Водяной пар в атмосфере обновляется в среднем примерно каждые восемь суток. Важным звеном круговорота воды является испарение, которое заключается в переходе воды из жидкого или твердого агрегатного состояния (возгонка) в газообразное и поступлении невидимого водяного пара в воздух.

Рис. 37. Средние годовые значения испарения с подстилающей поверхности (мм/год)

Влажный воздух немного легче сухого, так как он менее плотный. Например, насыщенный водяным паром воздух при температуре 0° и давлении 1000 мб менее плотен, чем сухой, – на 3 г/м (0,25%). При более высокой температуре и соответственно большем влагосодержании эта разница увеличивается.

Испарение показывает фактическое количество испаряющейся воды в отличие от испаряемости – максимально возможного испарения, не ограниченного запасами влаги. Поэтому над океанами испарение практически равно испаряемости. Интенсивностью или скоростью испарения называется количество воды в граммах, испаряющееся с 1 см 2 поверхности в секунду (V = г/см 2 в с). Измерение и вычисление испарения – трудная задача. Поэтому на практике испарение учитывают косвенным способом – по величине слоя воды (в мм), испарившейся за более длительные промежутки времени (сутки месяц). Слой воды в 1 мм с площади 1 м равен массе воды 1 кг. Интенсивность испарения с водной поверхности зависит от ряда факторов: 1) от температуры испаряющей поверхности: чем она выше, тем больше скорость движения молекул и большее их число отрывается от поверхности и попадает в воздух; 2) от ветра: чем больше его скорость, тем интенсивнее испарение, так как ветер относит насыщенный влагой воздух и приносит более сухой; 3) от дефицита влажности: чем она больше, тем интенсивнее испарение; 4) от давления: чем оно больше, тем меньше испарение, так как молекулам воды труднее оторваться от испаряющей поверхности.

Рассматривая испарение с поверхности почвы, надо учитывать такие ее физические свойства, как цвет (темные почвы из-за большого нагрева испаряют больше воды), механический состав (у суглинистых почв выше, чем у супесчаных, водоподъемная способность и интенсивность испарения), влажность (чем почва суше, тем слабее испарение). Важны и такие показатели, как уровень грунтовых вод (чем он выше, тем больше испарение), рельеф (на возвышенных местах воздух подвижнее, чем в низинах), характер поверхности (шероховатая по сравнению с гладкой обладает большей испаряющей площадью), растительность, которая уменьшает испарение с почвы. Однако растения сами испаряют много воды, забирая ее из почвы с помощью корневой системы. Поэтому в целом влияние растительности многообразное и сложное.


На испарение затрачивается тепло, в результате чего температура испаряющей поверхности понижается. Это имеет большое значение для растений, особенно в экваториально-тропических широтах, где испарение уменьшает их перегрев. Южное океаническое полушарие холоднее северного отчасти по этой же причине.

Суточный и годовой ход испарения тесно связан с температурой воздуха. Поэтому максимум испарения в течение суток наблюдается около полудня и хорошо выражен лишь в теплое время года. В годовом ходе испарения максимум приходится на самый теплый месяц, минимум – на холодный. В географическом распределении испарения и испаряемости, зависящих прежде всего от температуры и запасов воды, наблюдается зональность (рис. 37).

В экваториальной зоне испарение и испаряемость над океаном и сушей почти одинаковы и составляют около 1000 мм в год.

В тропических широтах их среднегодовые значения максимальные. Но наибольшие значения испарения – до 3000 мм отмечаются над теплыми течениями, а испаряемость 3000 мм – в тропических пустынях Сахары, Аравии, Австралии при фактическом испарении около 100 мм.

В умеренных широтах над материками Евразии и Северной Америки испарение меньше и постепенно уменьшается с юга на север из-за снижения температур и в глубь материков ввиду уменьшения влагозапасов в почве (в пустынях до 100 мм). Испаряемость в пустынях, наоборот, максимальная – до 1500 мм/год.

В полярных широтах испарение и испаряемость малы – 100–200 мм и одинаковы над морскими льдами Арктики и над ледниками суши.

Большая часть водяного пара поступает в атмосферу с поверхности морей и океанов. Особенно это относится к влажным, тропическим районам Земли. В тропиках испарение превышает количество осадков. В высоких широтах имеет место обратное соотношение. В целом же по всему земному шару количество осадков приблизительно равно испарению.

Испарение регулируется некоторыми физическими свойствами местности, в частности температурой поверхности воды и крупных водоемов, преобладающими здесь скоростями ветра. Когда над поверхностью воды дует ветер, то он относит в сторону увлажнившийся воздух и заменяет его свежим, более сухим (т.е. к молекулярной диффузии добавляется адвекция и турбулентная диффузия). Чем сильнее ветер, тем быстрее сменяется воздух и тем интенсивнее испарение.

Испарение можно характеризовать скоростью протекания процесса. Скорость испарения (V) выражается в миллиметрах слоя воды, испарившейся за единицу времени с единицы поверхности. Она зависит от дефицита насыщения, атмосферного давления и скорости ветра.

Скорость испарения, гласит закон Дальтона, пропорционально разности между давлением насыщающего пара при температуре испаряющей поверхности и фактическим давлением водяного пара:

V = А(Е S – е),

где Е S – упругость водяного пара при температуре испарителя; е – фактическая упругость водяного пара в воздухе над испаряющей поверхностью; А – коэффициент пропорциональности.

Чем больше разность (Е S – е), тем быстрее идет испарение. Если температура испарителя больше температуры воздуха, то испарение продолжается, когда воздух уже насыщен (т.е. когда е=Е, а Е<Е S).

Согласно формуле Августа, скорость испарения обратно пропорциональна давлению атмосферы р:

Но этот фактор хорошо выражен лишь в горах, где имеет место большой перепад высот, а значит и атмосферного давления.

Скорость испарения также зависит от скорости ветра (v). Таким образом, суммарная формула для расчета V:

Испарение в реальных условиях измерить трудно. Для измерения испарения применяют испарители различных конструкций или испарительные бассейны (с площадью поперечного сечения 20 м 2 или 100 м 2 и глубиной 2 м). Но значения, полученные по испарителям, нельзя приравнивать к испарению с реальной физической поверхности. Поэтому прибегают к расчетным методам: испарение с поверхности суши рассчитывается исходя из данных по осадкам, стоку и влагосодержанию почвы, которые легче получить путем измерений. Испарение с поверхности моря можно вычислить по формулам, близким к суммарному уравнению.

Различают фактическое испарение и испаряемость.

Испаряемость – потенциально возможное испарение в данной местности при существующих в ней атмосферных условиях.

При этом подразумевают либо испарение с поверхности воды в испарителе; испарение с открытой водной поверхности крупного водоема (естественного пресноводного); испарение с поверхности избыточно увлажненной почвы. Испаряемость выражается в миллиметрах слоя испарившейся воды за единицу времени.

В полярных областях испаряемость мала : около 80 мм/год. Это связано с тем, что здесь наблюдаются низкие температуры испаряющей поверхности, а давление насыщенного водяного пара Е S и фактическое давление водяного пара малы и близки между собой, поэтому и разность (Е S – е) невелика.

В умеренных широтах испаряемость изменяется в широких пределах и имеет тенденцию к росту при продвижении с северо-запада на юго-восток материка, что объясняется ростом в этом же направлении дефицита насыщения. Наименьшие значения в этом поясе Евразии наблюдаются на северо-западе материка: 400–450 мм, наибольшие (до 1300–1800 мм) в Центральной Азии.

В тропиках испаряемость мала на побережьях и резко увеличивается во внутриматериковых частях до 2500–3000 мм.

У экватора испаряемость относительно низка: не превышает 100 мм по причине небольшой величины дефицита насыщения.

Фактическое испарение на океанах совпадает с испаряемостью. На суше оно существенно меньше, главным образом, зависит от режима увлажнения. Разность между испаряемостью и осадками можно использовать для расчета дефицита увлажнения воздуха.