Все о тюнинге авто

Четверти на координатной плоскости какие знаки. Координатные четверти

«Функции 9 класс» - У=х3. Функцию можно задать с помощью формулы, например: y=2x+5, S=at2/2, S=vt. К элементарным функциям относятся практически все функции, встречающиеся в школьном учебнике. Руководитель Крючкова Татьяна Борисовна учитель, математики. Оглавление: Приложение 3. У=х2 У=3Х2. У=х2. Приложение4. У=0,3х2. Приложение 1.

«Свойства функции» - 0. 1.Определение функции. 3.Область значений. y=0, x=0 6.Промежутки знакопостоянства y > 0 на (0; +). 5.Ноль функции. Свойства функции. 7. Промежутки возрастания и убывания. y= x, n=2 2.Область определения D(y)=. Такие величины соответственно называются постоянными и переменными. -p. T. y = f(x). -1. Далее.

«Исследование функции» - Используя схему исследования функции выполните задание: п. 24; №296 (а; б), №299 (а; б). Проверочная работа: Ответ:D(f)=R, нечётная, возростающая. Выполните устно: Для функции f(x)=х3 определить D(f), четность, возрастание, убывание. Докажите, что функция f(x)=х5+4х возрастает на множестве R. 2) Пример исследования функции.

«Координатная плоскость» - Уравнение прямой в. Формировать умение решать задачи на координатную плоскость. Координатная прямая, координатный угол. Задача №1. Правило чтения координат. Координатные четверти. Как отмечаются точки на плоскости. (2 способ). Уравнение прямой а. План урока. Координаты точек, расположенных на осях.

«Возрастание функции» - Алгоритм нахождения экстремумов функции. Решение неравенства выполняется аналитически, либо методом интервалов. Находим f / (x) Определяем критические точки функции f(x), т.е. точки, в которых f / (x)=0 или f / (x) не существует. Производная. Содержание. Tg(a)=k, к-коэффициент касания. Таблица производных.

Всего в теме 19 презентаций

Если расположить единичную числовую окружность на координатной плоскости, то для ее точек можно найти координаты. Числовую окружность располагают так, чтобы ее центр совпал с точкой начала координат плоскости, т. е. точкой O (0; 0).

Обычно на единичной числовой окружности отмечают точки соответствующие от начала отсчета на окружности

  • четвертям - 0 или 2π, π/2, π, (2π)/3,
  • серединам четвертей - π/4, (3π)/4, (5π)/4, (7π)/4,
  • третям четвертей - π/6, π/3, (2π)/3, (5π)/6, (7π)/6, (4π)/3, (5π)/3, (11π)/6.

На координатной плоскости при указанном выше расположении на ней единичной окружности можно найти координаты, соответствующие этим точкам окружности.

Координаты концов четвертей найти очень легко. У точки 0 окружности координата x равна 1, а y равен 0. Можно обозначить так A (0) = A (1; 0).

Конец первой четверти будет располагаться на положительной полуоси ординат. Следовательно, B (π/2) = B (0; 1).

Конец второй четверти находится на отрицательной полуоси абсцисс: C (π) = C (-1; 0).

Конец третьей четверти: D ((2π)/3) = D (0; -1).

Но как найти координаты середин четвертей? Для этого строят прямоугольный треугольник. Его гипотенузой является отрезок от центра окружности (или начала координат) к точке середины четверти окружности. Это радиус окружности. Поскольку окружность единичная, то гипотенуза равна 1. Далее проводят перпендикуляр из точки окружности к любой оси. Пусть будет к оси x. Получается прямоугольный треугольник, длины катетов которого - это и есть координаты x и y точки окружности.

Четверть окружности составляет 90º. А половина четверти составляет 45º. Поскольку гипотенуза проведена к точке середины четверти, то угол между гипотенузой и катетом, выходящим из начала координат, равен 45º. Но сумма углов любого треугольника равна 180º. Следовательно, на угол между гипотенузой и другим катетом остается также 45º. Получается равнобедренный прямоугольный треугольник.

Из теоремы Пифагора получаем уравнение x 2 + y 2 = 1 2 . Поскольку x = y, а 1 2 = 1, то уравнение упрощается до x 2 + x 2 = 1. Решив его, получаем x = √½ = 1/√2 = √2/2.

Таким образом, координаты точки M 1 (π/4) = M 1 (√2/2; √2/2).

В координатах точек середин других четвертей будут меняться только знаки, а модули значений оставаться такими же, так как прямоугольный треугольник будет только переворачиваться. Получим:
M 2 ((3π)/4) = M 2 (-√2/2; √2/2)
M 3 ((5π)/4) = M 3 (-√2/2; -√2/2)
M 4 ((7π)/4) = M 4 (√2/2; -√2/2)

При определении координат третьих частей четвертей окружности также строят прямоугольный треугольник. Если брать точку π/6 и проводить перпендикуляр к оси x, то угол между гипотенузой и катетом, лежащим на оси x, составит 30º. Известно, что катет, лежащий против угла в 30º, равен половине гипотенузы. Значит, мы нашли координату y, она равна ½.

Зная длины гипотенузы и одного из катетов, по теореме Пифагора находим другой катет:
x 2 + (½) 2 = 1 2
x 2 = 1 - ¼ = ¾
x = √3/2

Таким образом T 1 (π/6) = T 1 (√3/2; ½).

Для точки второй трети первой четверти (π/3) перпендикуляр на ось лучше провести к оси y. Тогда угол при начале координат также будет 30º. Здесь уже координата x будет равна ½, а y соответственно √3/2: T 2 (π/3) = T 2 (½; √3/2).

Для других точек третей четвертей будут меняться знаки и порядок значений координат. Все точки, которые ближе расположены к оси x будут иметь по модулю значение координаты x, равное √3/2. Те точки, которые ближе к оси y, будут иметь по модулю значение y, равное √3/2.
T 3 ((2π)/3) = T 3 (-½; √3/2)
T 4 ((5π)/6) = T 4 (-√3/2; ½)
T 5 ((7π)/6) = T 5 (-√3/2; -½)
T 6 ((4π)/3) = T 6 (-½; -√3/2)
T 7 ((5π)/3) = T 7 (½; -√3/2)
T 8 ((11π)/6) = T 8 (√3/2; -½)

Прямоугольная система координат на плоскости задаётся двумя взаимно перпендикулярными прямыми. Прямые называют осями координат (или координатными осями). Точку пересечения этих прямых называют началом отсчёта и обозначают буквой O.

Обычно одна из прямых горизонтальна, другая — вертикальна. Горизонтальную прямую обозначают как ось x (или Ox) и называют осью абсцисс, вертикальную — ось y (Oy), называют осью ординат. Всю систему координат обозначают xOy.

Точка O разбивает каждую из осей на две полуоси, одну из из которых считают положительной (её обозначают стрелкой), другую — отрицательной.

Каждой точке F плоскости ставится в соответствие пара чисел (x;y) — её координаты.

Координата x называется абсциссой. Она равна Ox, взятому с соответствующим знаком.

Координата y называется ординатой и равна расстоянию от точки F до оси Oy (с соответствующим знаком).

Расстояния до осей обычно (но не всегда) измеряют одной и той же единицей длины.

Точки, расположенные справа от оси y, имеют положительные абсциссы. У точек, которые лежат левее оси ординат, абсциссы отрицательны. Для любой точки, лежащей на оси Oy, её координата x равна нулю.

Точки с положительной ординатой лежат выше оси x, с отрицательной — ниже. Если точка лежит на оси Ox, её координата y равна нулю.

Координатные оси разбивают плоскость на четыре части, которые называют координатными четвертями (или координатными углами или квадрантами).

1 координатная четверть расположена в правом верхнем углу координатной плоскости xOy. Обе координаты точек, расположенных в I четверти, положительны.

Переход от одной четверти к другой ведётся против часовой стрелки.

2 координатная четверть находится в левом верхнем углу. Точки, лежащие во II четверти, имеют отрицательную абсциссу и положительную ординату.

3 координатная четверть лежит в левом нижнем квадранте плоскости xOy. Обе координаты точек, принадлежащей III координатному углу, отрицательны.

4 координатная четверть — это правый нижний угол координатной плоскости. Любая точка из IV четверти имеет положительную первую координату и отрицательную вторую.

Пример расположения точек в прямоугольной системе координат: