Все о тюнинге авто

Очистка воды водоканал. Куда течёт вода из унитаза, или Как очищаются бытовые сточные воды. Биоэкономика в тренде

Вода. Любой человек обойтись без воды не может, а уж сколько воды в день в среднем использует житель России я даже гадать не хочу… Давайте поговорим о том, что происходит с водой перед тем, как она оказывается в кране. Для этого отправимся на Юго-западную водопроводную станцию Москвы.

Вода для Москвы берётся из Москвы-реки и из Волги. В случае с Юго-западной водопроводной станцией – это Москва-река. Насосная станция “первого подъема”, расположенная рядом с деревней Раздоры (МО, Одинцовский район) поднимает воду с глубины пяти метров и по трубам отправляет на Юго-Западную (сюда) и Западную водопроводные станции.

1. Первый этап – первичное озонирование воды. Затем вода поступает в камеру смешения, где к ней добавляются специальные реагенты

2. Процесс смешения длится 10 минут. Реагенты способствуют, грубо говоря “сбиванию” загрязнений в хлопья

3. Далее вода идёт в отстойник, где эти самые хлопья оседают и убираются специальным механизмом на дне

4. Через наклонные пластинчатые модули вода расслаивается, что с одной стороны способствует отделению грязи, а другой ускорению движения воды

После этого вода снова озонируется

5. Качество воды – штука непостоянная и если вода на станцию придёт слишком загрязненная – в процесс добавится ещё одна стадия очистки

По словам сотрудников, такой необходимости за 10 лет существования станции не возникало

6.

7. Следующая стадия – многослойные фильтры. Всего их 20 с двухслойной загрузкой (песок + антрацит), площадь каждого – 78 квадратных метров

Цикл очистки фильтров производится в зависимости от загрязнения. В среднем – раз в сутки.

8. Последняя стадия – мембранная ультрафильтрация

9. Вода пропускается через трубочки толщиной 0,01 микрона. Всё, что толще – задерживается

10. Каждый час мембранный модуль прочищается (в направлении противоположном фильтрации воды) и 4 раза в год чистится химически

11. Это последняя стадия, на выходе получается готовая питьевая вода

12. Вот она! 40 тысяч кубометров чистой воды. В этот подземный резервуар вода попадает примерно на 3-4 часа промежуточного хранения

13. И потом уходит к потребителю, т.е. нам в краны

Проблема чистоты воды в мегаполисах стоит острее, чем в небольших населенных пунктах. Урбанизация привела к резкому увеличению количества бытовых стоков. Для обеспечения жизнедеятельности человека в водопроводные магистрали ежедневно подаются кубокилометры питьевой воды. Понятно, что водоснабжение отдельного домовладения легко организовать с помощью шахтного колодца. В отдельных случаях поселки и города снабжаются из артезианских скважин или других естественных водоемов, но в общей массе вода забирается из искусственных водохранилищ. Да-да, именно из тез больших водоемов, где водится рыба, купаются отдыхающие, стекают атмосферные осадки, попадают бытовые и промышленные отходы.

Чтобы простая пресная вода превратилась в питьевую, она должна пройти серьезную очистку , состоящую из нескольких этапов, и только тогда, пройдя долгий путь, она потечет из крана. Возможно, недостаточно вкусная, скорее всего с различными примесями и специфическим запахом, но безопасная для здоровья. Теоретически, представители водоканалов регулярно проводят заборы и контролируют ее качество. В этой статье мы собрали информацию, как именно очищают воду и что в нее добавляют в разных городах и странах. Способы очистки отличаются, ведь в каждой части мира есть свои сложности и проблемы. Среди них: повышенные концентрации микроорганизмов, фекальные стоки, тяжелые металлы, пестициды.

Чем и как чистят воду для населения в России

Чистая питьевая вода в городских водопроводах отсутствует не только в России, но и в других странах. Приятное исключение – некоторые европейские страны, которые защищают воду конституцией. Остальным приходится довольствоваться тем, что течет из крана. Качество российской водопроводной воды способствует развитию отрасли бытовых фильтров и бутылированной воды.

Вода, забираемая из открытых водохранилищ чище, чем та, что подается из подземных резервуаров. Эта проблема затрагивает Подмосковье и часть Новой Москвы. К 2025 году планируется полная реконструкция системы водоснабжения

В Москву воду поставляют из Волги и Москвы-реки и обрабатывают на четырех станциях водоподготовки. После забора она транспортируется в регулирующий бассейн, где она проходит первый этап фильтрации. Из воды отсеивают крупные фракции мусора, растительность и рыбу. Процеженная вода отправляется в смесительную емкость для дезинфекции.

Сначала добавляют порошок активированного угля. В следующей емкости ее под высоким напором смешивают с коагулянтом полиоксихлоридом алюминия. От такой процедуры сначала смесь покрывается пеной. Добавление флоакулянта собирает пену в крупные хлопья. В ней содержатся все связанные вредные вещества. В отстойниках под собственным весом загрязнения осаждаются и убираются со дна. Повторный цикл фильтрации, проходя через песчаные и угольные фильтры.

Несколько последних лет московский водоканал начал практиковать обеззараживание и очистку питьевой воды с помощью озоносорбции. Озон получают искусственным путем. Это опасный газ, вдыхание которого приводит к летальному исходу.

После фильтрации и озонирования вода становится пригодной для питья и отвечает всем санитарно-гигиеническим нормам. К сожалению, ее нельзя сразу подавать в водопровод. Тысячи километров труб, недостаточная циркуляция и тупиковые ответвления станут отличной средой для микроорганизмов.

Мировая практика – использовать для санитарной обработки питьевой воды хлор. Он дешевый и эффективный, хотя и не безвредный. Раньше применяли жидкий хлор, поэтому сейчас переходят на его менее опасный аналог – гипохлорит натрия. На выходе из станции водоподготовки остаточные концентрации хлора в воде находится в пределах 0,8-1,2 мг/л. Превышение или занижение нормы – влечет за собой уголовную ответственность. Соблюдение технологии контролируется Роспотребнадзором.

В питерском университете Петра Великого создали электролизный агрегат, который в будущем сможет заменить хлорирование. Активный реагент феррат натрия расщепляет токсины на малотоксичные производные и уничтожает микроорганизмы, не оставляя в воде опасных остаточных продуктов

Специалисты отмечают, что специфический запах водопроводной воды должен ощущаться, если его нет, возможно, были нарушения технологии обеззараживания. Он оценивается по пятибалльной шкале. Летом запах сильнее из-за того, что высокие температуры способствуют размножению бактерий, и приходится использовать больше хлора для обработки воды.

Отношения между местным предприятием водоканала и потребителем водопроводной воды регулируются законодательно. Если из крана течет вместо питьевой воды, странная жидкость с цветом и физическими примесями, то вы имеете право подать на поставщика некачественной услуги в суд, собрав анализы и пакет документов.

Очистка воды заграницей

В разных странах практикуются разные алгоритмы водоподготовки. Главная задача – получить безопасную воду, но, например, в Японии вода должна быть еще и вкусной. Оказывается, что из японских кранов течет вода, которая вкуснее многих видов бутылированной. Этого добиваются озонированием и фильтрацией. Здесь самые строгие стандарты. Хлорирование питьевой воды в Японии обязательно, но содержание остаточного хлора составляет до 0,4 мг/л. Чтобы поддерживать концентрацию без превышения, она отслеживается и в случаи снижения препарат добавляется на насосных станциях.

Хлорированием очищается более 90% водопроводной воды во всем мире. Около сотой доли приходится на озонирование и другие методы. Недостаток альтернативных методик – нет долгосрочного обеззараживающего эффекта. Обработанная хлором вода безопасна в микробиологическом плане, но содержит в себе галогенсодержащие соединения, в основном – тригалометаны. Использование гипохлоритов только способствует их образование. Самый простой способ снизить концентрации органических веществ природного происхождения на стадиях водоподготовки предшествующих хлорированию.

Стран, которые отказались от хлорирования питьевой воды немного, а результаты противоречивые. В Германии – все хорошо, требования к водопроводной воде строже, чем к бутылированной, в Перу – случилась эпидемия холеры

Финляндия входит в топ-10 стран с самой чистой водой. Для очистки используется сульфат железа, который связывает органические вещества. Дальше вода последовательно проходит песчаные фильтры, озон, активированный уголь и ультрафиолет. Уже в распределительной системе добавляется хлорамин.

Во Франции алгоритм похож, но без ультрафиолета. Кроме того для защиты труб используется ортофосфорная кислота. Жители Австрии наслаждаются водой с минимальными количествами двуокиси хлора.

Как правило, чем более развита страна, тем жестче прописаны предельно допустимые концентрации побочных продуктов хлорирования. Они находятся в пределах 0,06-0,2 мг/л. В российской водопроводной воде ПДК в несколько раз выше.

Альтернативные методы очистки

Заменой хлорированию могут стать обработка ультрафиолетом, ультразвук и озонирование. В продаже есть стационарные установки для подготовки воды, но хлорка пока остается однозначным монополистом в сфере дезинфекции. Отказаться от нее без введения достойной антибактериальной обработки, значит поставить здоровье и жизни потребителей под угрозу.

Ультрафиолет считается самым эффективным из нехимических вариантов. Технология развивается почти четверть века, как только ученые обнаружили, что любой химический способ очистки дает вредные для человеческого организма побочные эффекты.

Пока в отечественных водопроводах со старыми трубами течет вода не совсем питьевого качества, потребителям приходится тратиться на доочистку с помощью кипячения, отстаивания и фильтрования. Это объясняет почему, растет спрос на строительство колодцев. Выбрав хорошую компанию, клиент получит более качественную воду.

Вода на современных водопроводных станциях подвергается многоступенчатой очистке для удаления твердых примесей, волокон, коллоидных взвесей, микроорганизмов, для улучшения органолептических свойств. Максимально качественный результат достигается сочетанием двух технологий: механической фильтрации и химической обработки.

Особенности технологий очистки

Механическая фильтрация . Первый этап водоподготовки позволяет удалить из среды видимые твердые и волокнистые включения: песок, ржавчину и т. д. При механической обработке воду последовательно пропускают через ряд фильтров с уменьшающимся размером ячеек.

Химическая обработка . Технология используется для приведения химического состава и качественных показателей воды к норме. В зависимости от первоначальных характеристик среды обработка может включать несколько этапов: отстаивание, обеззараживание, коагуляцию, умягчение, осветление, аэрацию, деминерализацию, фильтрацию.

Методы химической очистки воды на водопроводных станциях

Отстаивание

На водопроводных станциях устанавливают специальные резервуары с переливным механизмом или устраивают железобетонные отстойники на глубине 4–5 м. Скорость движения воды внутри емкости поддерживается на минимальном уровне, причем верхние слои перетекают быстрее, чем нижние. В таких условиях тяжелые частицы оседают на дно резервуара и удаляются из системы через отводные каналы. В среднем на отстаивание воды уходит 5–8 часов. За это время оседает до 70 % тяжелых примесей.

Обеззараживание

Технология очистки направлена на удаление из воды опасных микроорганизмов. Установки обеззараживания присутствуют во всех без исключения водопроводных системах. Дезинфекция воды может выполняться облучением или добавлением химических реагентов. Несмотря на появление современных технологий, использование обеззаражи.вающих средств на основе хлора является предпочтительным. Причина популярности реагентов заключается в хорошей растворимости хлорсодержащих соединений в воде, способности сохранять активность в подвижной среде, оказывать дезинфицирующее действие на внутренние стенки трубопровода.

Коагуляция

Технология позволяет удалять растворенные примеси, которые не улавливаются фильтрующими сетками. В качестве коагулянтов для воды используют полиоксихлорид или сульфат алюминия, калийно-алюминиевые квасцы. Реагенты вызывают коагуляцию, то есть слипание органических примесей, крупных белковых молекул, планктона, находящегося во взвешенном состоянии. В воде образуются крупные тяжелые хлопья, которые выпадают в осадок, увлекая за собой органические взвеси, некоторые микроорганизмы. Для ускорения реакции на станциях очистки используют флокулянты. Мягкую воду подщелачивают содой или известью для быстрого образования хлопьев.

Умягчение

Содержание соединений кальция и магния (солей жесткости) в воде строго регламентировано. Для удаления примесей используют фильтры с катионными или анионными ионообменными смолами. Когда вода проходит через загрузку, ионы жесткости замещаются водородом или натрием, безопасным для здоровья человека и водопроводной системы. Поглощающая способность смолы восстанавливается обратной промывкой, но емкость уменьшается с каждым разом. Ввиду высокой стоимости материалов такая технология умягчения воды используется в основном на локальных очистных сооружениях.

Осветление

Методику используют для очистки поверхностных вод, загрязненных фульвокислотами, гуминовыми кислотами, органическими примесями. Жидкость из таких источников часто имеет характерный цвет, привкус, зеленовато-коричневый оттенок. На первом этапе воду направляют в смесительную камеру с добавлением химического коагулянта и хлорсодержащего реагента. Хлор разрушает органические включения, а коагулянты выводят их в осадок.

Аэрация

Технология используется для удаления из воды двухвалентного железа, марганца, других окисляющихся примесей. При напорной аэрации жидкость барботируется воздушной смесью. Кислород растворяется в воде, окисляет газы и соли металлов, выводя их из среды в виде осадка или нерастворимых летучих веществ. Аэрационная колонна наполняется жидкостью не полностью. Воздушная подушка над поверхностью воды смягчает гидроудары и увеличивает площадь контакта с воздухом.

Безнапорная аэрация требует более простого оборудования и проводится в специальных душевальных установках. Внутри камеры вода распыляется через эжекторы для увеличения площади контакта с воздухом. При высоком содержании железа аэрационные комплексы могут дополняться озонирующим оборудованием или фильтрующими кассетами.

Деминерализация

Технология используется для подготовки воды в промышленных водопроводных системах. Деминерализация выводит избыточное железо, кальций, натрий, медь, марганец и другие катионы и анионы из среды, увеличивая срок службы технологических трубопроводов и оборудования. Для очистки воды используют технологию обратного осмоса, электродиализа, дистилляции или деионизации.

Фильтрация

Воду фильтруют пропусканием через угольные фильтры, или углеванием. Сорбент поглощает до 95 % примесей, как химических, так и биологических. До недавнего времени для фильтрации воды на водопроводных станциях использовались прессованные картриджи, но их регенерация является достаточно дорогостоящим процессом. Современные комплексы включают порошкообразную или гранулированную угольную загрузку, которую просто высыпают в емкость. При перемешивании с водой уголь активно удаляет примеси, не изменяя своего агрегатного состояния. Технология более дешевая, но такая же эффективная, как блочные фильтры. Угольная загрузка выводит из воды тяжелые металлы, органику, поверхностно-активные вещества. Технология может применяться на очистных сооружениях любого типа.

Воду какого качества получает потребитель

Вода становится питьевой только после прохождения полного комплекса очистных мероприятий. Затем она поступает в городские коммуникации для доставки потребителю.

Необходимо учесть, что даже при полном соответствии параметров воды на очистных сооружениях санитарно-гигиеническим нормам в точках водоразбора ее качество может быть значительно ниже. Причина в старых, проржавевших коммуникациях. Вода загрязняется при прохождении по трубопроводу. Поэтому установка дополнительных фильтров в квартирах , частных домах и на предприятиях остается актуальным вопросом. Грамотно подобранное оборудование гарантирует соответствие воды нормативным требованиям и даже делает ее полезной для здоровья.


Сегодня речь в очередной раз пойдет на тему близкую каждому из нас без исключений:)

Большинство людей, нажимая на кнопку унитаза не задумываются, что происходит с тем, что они смывают. Утекло и утекло, делов то. В таком большом городе как Москва в день в канализационную систему утекает не много ни мало четыре миллиона кубометров сточных вод. Это примерно столько же, сколько протекает воды в Москва-реке за день напротив Кремля. Весь этот огромный объем сточной воды нужно очищать и задача это весьма непростая.

В Москве действует две крупнейшие станции очистки сточных вод, примерно одинакового размера. Каждая из них очищает половину того, что "производит" Москва. Про Курьяновскую станцию я уже . Сегодня я расскажу про Люберецкую станцию - мы вновь пробежимся по основным этапам очистки воды, но еще и затронем одну весьма важную тему - как на станциях очистки борются с неприятными запахами с помощью низкотемпературной плазмы и отходов парфюмерной промышленности и почему эта проблема вообще стала актуальна как никогда.

Для начала немного истории. Впервые канализация "пришла" в район современных Люберец в начале ХХ века. Тогда были созданы Люберецкие поля орошения, на которых сточные воды, еще по старой технологии просачивались через землю и тем самым очищались. Со временем эта технология стала неприемлема для все возрастающего количества сточных вод и в 1963 году была построена новая станция очистки - Люберецкая. Чуть позже была построена еще одна станция - Новолюберецкая, фактически граничащая с первой и использующая часть ее инфраструктуры. По сути сейчас это одна большая станция очистки, но состоящая из двух частей - старой и новой.

Взглянем на карту - слева, на западе - старая часть станции, справа, на востоке - новая:

Площадь станции - огромная, по прямой из угла в угол около двух километров.

Как не сложно догадаться - от станции идет запах. Раньше он мало кого волновал, а сейчас эта проблема стала актуальна по двум основным причинам:

1)Когда станция была построена, в 60х, вокруг нее практически никто не жил. Рядом был небольшой поселок, где жили сами работники станции. Тогда эта местность была далеко-далеко от Москвы. Сейчас же идет очень активная застройка. Станцию фактически со всех сторон окружают новостройки и будет их еще больше. Новые дома строят даже на бывших иловых площадках станции (поля, на которые свозился ил оставшийся от переработки сточных вод). В результате жители близлежащих домов вынуждены периодически нюхать "канализационные" запахи, ну и естественно они постоянно жалуются.

2)Канализационные воды стали более концентрированные чем раньше, в советские времена. Произошло это из-за того, что объем используемой воды за последнее время сильно сократился , в то время как в туалет ходить меньше не стали, а даже наоборот - население выросло. Причин того, что "разбавляющей" воды стало намного меньше довольно много:
а)использование счетчиков - воду стали экономнее использовать;
б)использование более современной сантехники - все реже можно встретить текущий кран или унитаз;
в)использование более экономной бытовой техники - стиральные машины, посудомоечные машины и т.п.;
г)закрытие огромного количества промышленных предприятий, которые потребляли очень много воды - АЗЛК, ЗИЛ, Серп и Молот(частично) и т.п.
Как результат - если станция при строительстве рассчитывалась на объем 800 литров воды на человека в сутки, то сейчас реально этот показатель не больше 200. Повышение концентрации и снижение потока привело к ряду побочных эффектов - в канализационных трубах рассчитанных на больший поток стал откладываться осадок, приводящий к неприятным запахам. На самой станции стало больше пахнуть.

Для борьбы с запахом Мосводоканал, в ведении которого находятся очистные сооружения проводит поэтапную реконструкцию сооружений, применяя несколько разных способов избавления от запахов, про которые и пойдет рассказ ниже.

Давайте пойдем по порядку, а точнее по току воды. Сточная вода из Москвы поступает на станцию по Люберецкому канализационному каналу, представляющему собой огромный подземный коллектор заполненный сточными водами. Канал самотечный и почти на всем протяжении идет на очень малой глубине, а порой вообще фактически над землей. Его масштаб можно оценить с крыши административного здания очистных сооружений:

Ширина канала - около 15 метров(разделен на три части), высота - 3 метра.

На станции канал приходит в так называемую приемную камеру, откуда разделяется на два потока - часть идет на старую часть станции, часть на новую. Приемная камера выглядит так:

Сам канал приходит справа-сзади, а разделенный на две части поток уходит по зеленым каналам на заднем плане, каждый из которых может перекрываться так называемым шибером - специальным затвором (на фото - темные конструкции). Тут можно заметить первое нововведение для борьбы с запахами. Приемная камера полностью накрыта листами металла. Раньше она выглядела как "бассейн" заполненный фекальными водами, теперь же их не видно, естественно сплошное металлическое покрытие практически полностью перекрывает запах.

Для технологических целей был оставлен лишь совсем небольшой лючок, приподняв который можно насладиться всем букетом запахов. Привет от walsk :)

Эти огромные шиберы позволяют перекрывать каналы идущие от приемной камеры в случае необходимости.

От приемной камеры идет два канала. Они тоже еще совсем недавно были открытыми, теперь же их полностью накрыли металлическим перекрытием.

Под перекрытием скапливаются газы, выделяющиеся из сточных вод. Главным образом это метан и сероводород - оба газа взрывоопасны при высоких концентрациях, поэтому пространство под перекрытием нужно обязательно вентилировать, но тут возникает следующая проблема - если просто поставить вентилятор, то весь смысл перекрытия просто пропадет - запах попадет наружу. Поэтому для решения проблемы МКБ "Горизонт" разработало и изготовило специальную установку для очистки воздуха. Установка находится в отдельной будочке и к ней идет вентиляционная труба от канала.

Данная установка - экспериментальная, для отработки технологии. В ближайшее время такие установки начнут массово ставить на очистных сооружениях и на канализационно-насосных станциях, которых в Москве более 150 штук и от которых тоже исходят неприятные запахи. Справа на фото - один из разработчиков и испытателей установки - Александр Позиновкий.

Принцип действия установки следующий:
в четыре вертикальные трубы из нержавеющей стали снизу подается загрязненный воздух. В этих же трубах находятся электроды, на которые несколько сот раз в секунду подается высокое напряжение(десятки тысяч вольт), в результате чего возникают разряды и низкотемпературная плазма. При взаимодействии с ней большинство пахнущих газов переходят в жидкое состояние и оседают на стенках труб. По стенам труб постоянно стекает тонкий слой воды, с которым эти вещества смешиваются. Вода циркулирует по кругу, резервуар для воды - синяя емкость справа, снизу на фото. Очищенный воздух выходит сверху из нержавеющих труб и просто выпускается в атмосферу.
Для тех кому интереснее подробнее - фотография стенда , на котором все объяснено.

Для патриотов - установка полностью разработана и создана в России, за исключением стабилизатора питания(снизу в шкафу на фото). Высоковольтная часть установки:

Так как установка экспериментальная - в ней имеется дополнительное измерительное оборудование - газоанализатор и осциллограф.

Осциллограф показывает напряжение на конденсаторах. Во время каждого разряда конденсаторы разряжаются и на осциллограмме хорошо виден процесс их заряда.

К газоанализатору идет две трубки - одна забирает воздух до установки, другая после. Кроме того есть краник, который позволяет выбрать ту трубку, которая подключается к датчику газоанализатора. Александр демонстрирует нам сначала "грязный" воздух. Содержание сероводорода - 10.3 мг/м 3 . После переключения крана - содержание падает практически до нуля: 0.0-0.1.

Каждый из каналов также перекрывается отдельным шибером. Вообще говоря, на станции их огромное количество - торчат тут и там:)

После очистки от крупного мусора вода попадает в песколовки, которые, как опять же не сложно догадаться из названия предназначены для удаления мелких твердых частиц. Принцип работы песколовок довольно прост - по сути это длинный прямоугольный резервуар, в котором вода движется с определенной скоростью, в результате песок просто успевает осесть. Также туда подается воздух, который способствует процессу. Снизу песок удаляется с помощью специальных механизмов.

Как часто бывает в технике - идея простая, а исполнение - сложное. Так и тут - визуально это самая "навороченная" конструкция на пути очистки воды.

Песколовки облюбовали чайки. Вообще чаек на Люберецкой станции оказалось очень много, но именно на песколовках их было больше всего.

Увеличил фотографию уже дома и посмеялся с их вида - забавные птички. Называются чайки озерные. Нет, темная голова у них не потому что они постоянно окунают ее туда, куда не надо, просто такая конструктивная особенность:)
Скоро им впрочем придется не легко - многие открытые водные поверхности на станции будут накрыты.

Вернемся к технике. На фото - дно песколовки (не работающей в данный момент). Именно туда оседает песок и оттуда же и удаляется.

После песколовок вода снова поступает в общий канал.

Тут можно увидеть, как выглядели все каналы на станции, до того как их начали накрывать. Этот канал прямо сейчас накрывается.

Каркас варят из нержавейки, как и большинство металлических конструкций в канализации. Дело в том, что в канализации очень агрессивная среда - вода полная всяких веществ, 100% влажность, газы способствующие коррозии. Обычное железо очень быстро превращается в труху в таких условиях.

Работы ведутся прямо над действующим каналом - так как это один из двух основных каналов, то отключить его нельзя (москвичи ждать не будут:)).

На фото небольшой перепад уровня, около 50 сантиметров. Дно в этом месте сделано специальной формы, для гашения горизонтальной скорости воды. Как результат - очень активное бурление.

После песколовок вода поступает на первичные отстойники. На фото - на переднем плане камера, в которую поступает вода, из нее она попадает в центральную часть отстойника на заднем плане.

Классический отстойник выглядит так:

А без воды - так:

Грязная вода поступает из отверстия в центре отстойника и попадает в общий объем. В самом отстойнике взвесь содержащаяся в грязной воде постепенно оседает на дно, по которому постоянно перемещается илосгребатель, закрепленный на ферме, вращающейся по кругу. Скребок сгребает осадок в специальный кольцевой лоток, а из него, в свою очередь он попадает в круглый приямок, откуда откачивается по трубе специальными насосами. Излишки воды утекают в канал проложенный по кругу отстойника и оттуда в трубу.

Первичные отстойники - еще один источник неприятных запахов на станции, т.к. в них находится фактически грязная (очищенная только от твердых примесей) канализационная вода. Для того чтобы избавится от запаха Москводоканал решил накрыть отстойники, но тут встала большая проблема. Диаметр отстойника составляет 54 метра(!). Фото с человеком для масштаба:

При этом если делать крышу, то она должна во-первых выдерживать снеговую нагрузку зимой, во-вторых иметь только одну опору по центру - над самим отстойником опоры делать нельзя, т.к. там постоянно вращается ферма. В результате было принято элегантное решение - сделать перекрытие плавающим.

Перекрытие собрано из плавающих блоков из нержавеющей стали. Причем внешнее кольцо блоков закреплено неподвижно, а внутренняя часть вращается наплаву, вместе с фермой.

Такое решение оказалось очень удачным, т.к. во-первых отпадает проблема со снеговой нагрузкой, а во вторых не образуется объема воздуха, который пришлось бы вентилировать и дополнительно очищать.

По утверждениям Мосводоканала данная конструкция снизила выбросы пахнущих газов на 97%.

Данный отстойник был первым и экспериментальным, где была отработана данная технология. Эксперимент признан успешным и сейчас на Курьяновской станции уже накрывают подобным образом другие отстойники. Со временем все первичные отстойники будут накрыты подобным образом.

Однако, процесс реконструкции длительный - отключить всю станцию сразу невозможно, реконструировать отстойники можно только друг за другом, отключая по очереди. Да и деньги нужны немалые. Поэтому, пока не все отстойники накрыты применяют третий по счету способ борьбы с запахами - распыление нейтрализующих веществ.

Вокруг первичных отстойников были установлены специальные распылители, которые создают облако веществ нейтрализующих запахи. Сами вещества пахнут не сказать чтобы очень приятно или неприятно, но довольно специфично, впрочем их задача не замаскировать запах, а нейтрализовать его. К сожалению не запомнил конкретных веществ, которые применяются, но как сказали на станции - это отходы парфюмерной промышленности Франции.

Для распыления используются специальные форсунки, которые создают частицы диаметром 5-10 микрон. Давление в трубах если не ошибаюсь 6-8 атмосфер.

После первичных отстойников вода поступает в аэротэнки - длинные бетонные резервуары. В них подается огромное количество воздуха по трубам, а также содержится активный ил - основа всего метода биологической очистки вод. Активный ил перерабатывает "отходы", при этом быстро размножается. Процесс аналогичен тому, что происходит в природе в водоемах, однако протекает во много раз быстрее из-за теплой воды, большого количества воздуха и ила.

Воздух подается из главного машинного зала, в котором установлены турбовоздуходувки. Три башенки над зданием - воздухозаборники. Процесс подачи воздуха требует огромного количества электричества, при этом прекращение подачи воздуха приводит к катастрофическим последствиям, т.к. активный ил очень быстро погибает, а его восстановление может занять месяцы(!).

Аэротэнки, как ни странно особо не источают сильных неприятных запахов, поэтому их накрывать не планируется.

На этой фотографии видно как грязная вода поступает в аэротэнк(темная) и смешивается с активным илом(коричневый).

Часть сооружений в настоящее время отключено и законсервировано, по причинам о которых я писал в начале поста - снижение потока воды в последние годы.

После аэротэнков вода попадает во вторичные отстойники. Конструктивно они полностью повторяют первичные. Их назначение - отделить активный ил от уже очищенной воды.

Законсервированные вторичные отстойники.

Вторичные отстойники не пахнут - по сути тут уже чистая вода.

Вода собираемая в кольцевой лоток отстойника утекает в трубу. Часть воды проходит дополнительное УФ обеззараживание и сливается в речку Пехорку, часть же воды по подземному каналу идет до Москва-реки.

Осевший же активный ил используется для получения метана, который потом хранится в полуподземных резервуарах - метантэнках и используется на собственной ТЭЦ.

Отработавший ил отправляется на иловые площадки в подмосковье, где его дополнительно обезвоживают и либо захоранивают, либо сжигают.

На последок панорама станции с крыши административного здания. Нажмите для увеличения.

Выражаю огромную признательность за приглашение пресс-службе Мосводоканала , а также отдельно Александру Чурбанову - директору Люберецких очистных сооружений. Спасибо

Завершая цикл статей об очистке городских сточных вод, мы расскажем про обработку осадка - последний этап всего процесса. Статья получилась большая, однако тема обработки осадка при очистке городских сточных вод настолько же интересна, насколько и масштабна. Она касается многих аспектов: от сложных технологий и множества их видов, до экономической целесообразности их применения и соблюдения норм экологии. Для начала напомним, что полноценная технологическая схема очистки ГСВ должна включать в себя 4 основных процесса: механическую очистку, биологическую очистку, обеззараживание очищенной воды и обработку осадка. В ряде случаев могут применяться так называемые «урезанные схемы», в которых отсутствует какой-то процесс - это оправдано в исключительных условиях.

Рис. 0 Этапы очистки в полноценной технологической схеме ГСВ

Факт 1. С технической точки зрения сточные воды являются «жидкими отходами»

Сточные воды - это те отходы, которые с помощью воды приобретают текучую консистенцию, позволяющую отводить их в сооружение для очистки сточных вод. Задача очистки сточных вод состоит в том, чтобы надежно и экономично удалять из них нежелательные загрязняющие вещества, которые при спуске их в водоем могут вызвать недопустимые нагрузки на его экосистему. Для этого применяются методы, которые в конечном итоге способствуют разделению изначальных стоков на очищенные сточные воды и на остаточные вещества - осадок.

Возникающие остаточные вещества (рис. 1) можно разделить на следующие группы:

  • Отбросы, задержанные на решетках или ситах;
  • Песок, задержанный на песколовках;
  • Масла и жиры;
  • Осадок сточных вод (первичный, вторичный и третичный).

Отбросы с решеток/сит, песок с песколовок, а также жиры и масла удаляются из сточных вод уже в ходе механической предварительной очистки, чтобы они не мешали дальнейшим процессам очистки. Осадок сточных вод, напротив, является собственно продуктом очистки сточных вод, который содержит вещества, удаляемые из сточных вод путем обработки. По сравнению с другими остаточными веществами осадок сточных вод возникает в существенно больших количествах. Вопрос целесообразного экономического и одновременно экологического использования осадка до сих пор не решен однозначно.

Рис. 1. Возникновение остаточных веществ в очистном сооружении в зависимости от стадий процесса

В целом все остаточные вещества очистки сточных вод требуют надежного экологически безопасного удаления. Для всех остаточных веществ верно то, что по естественному закону сохранения материи и энергии они не могут быть уничтожены в собственном смысле этого слова, вследствие чего в распоряжении имеются только два способа:

  • Возвращение в круговорот веществ (переработка);
  • Вывод из круговорота веществ (устранение).

Однако, как правило, остаточные вещества имеют различные критические свойства/компоненты, которые препятствуют их непосредственному возвращению в круговорот веществ, либо изъятию из него. Вследствие этого становится необходима предварительная, «ориентированная на удаление» обработка с целью изменить критические свойства/компоненты таким образом, чтобы остаточные вещества более не вызывали критических нагрузок на окружающую среду.

Факт 2. Тип и объем обработки осадка зависят от количества и структуры осадка сточных вод, а также от имеющихся в распоряжении способов удаления

Задача по обработке осадка состоит в подготовке возникающего при очистке сточных вод осадка таким образом, чтобы он мог быть удален в соответствии с правилами, экономично и безвредно, т.е. без негативного общеэкологического влияния. Целью обработки осадка является изменение или улучшение важнейших свойств осадка (объема, запаха, гигиеничности и т.п.). Уменьшение содержания вредных веществ в осадке при этом не является задачей обработки осадка. Для этого требуются меры со стороны источника, т.е. производителей сточных вод. К важнейшим свойствам осадка, которые могут и должны быть изменены в ходе его обработки, относятся высокие доли воды, органического вещества и возбудителей заболеваний.

Если осадок сточных вод будет использоваться в сельском хозяйстве или земледелии, то он должен быть гигиенически безупречен и стабилен, т.к. не должно происходить образования запаха вследствие быстрого бактериального разложения. Для складирования на свалках органические твердые вещества должны быть удалены практически полностью (ПП < 5%). В обоих случаях осадок сточных вод должен транспортироваться, вследствие чего требуется отделить воду для уменьшения количества и объема. Как можно меньшее содержание воды важно также при термическом удалении в целях экономии применяемой энергии.

Для решения поставленных для обработки осадка задач в распоряжении имеется множество методов, которые могут быть систематически объединены в четыре основные операции (табл. 1.).

Основная операция

Цель

Примеры возможных технологий

Отделение воды

Сокращение объема и массы

Уплотнение, обезвоживание, сушка

Стабилизация

Частичное разложение органических примесей (снижение образования запаха)

Биологическая аэробная (компостирование); биологическая анаэробная (сбраживание)

Дезинфекция / обеззараживание

Уничтожение или сокращение числа микробов

Воздействие высокой температуры. Смещение значения pH, ионизированное облучение

Минерализация / инертизация

Полное разложение органических примесей

Сжигание. Газификация и дегазация. Мокрое окисление

Таблица 1. Основные операции по обработке осадка сточных вод

Многочисленные варианты методов комбинируются как модули процессов удаления с учетом качества и количества осадка сточных вод, а также в соответствии с желаемыми целями удаления. Гибкость процесса удаления при этом важна для безопасности удаления. Она достигается, когда первые модули выбранного процесса удаления допускают максимальное количество мест включения модулей альтернативных процессов удаления. Как правило, вначале находятся отделение воды и стабилизация.

Рассмотрим последовательно вышеперечисленные операции.

Факт 3. Осадок образуется в очистных сооружениях при содержании воды от 96 до 99,5%

Отделение воды.

Образование осадка приводит к техническим проблемам во всех последующих процессах обработки (или при удалении) и повышает издержки на строительство, оборудование и эксплуатацию. Поэтому каждый процесс обработки осадка должен содержать одну или несколько стадий, при которых вода отделяется от осадка в целях обеспечения оптимизированных условий для следующих стадий. Методы отделения воды подразделяются в зависимости от возможности выделять различные типы воды из взвеси осадка сточных вод:

  • На уплотнение (естественное или механическое) - удаление воды промежуточного пространства примерно до 15% СО (85% содержания воды (СВд/WG));
  • Обезвоживание (естественное или механическое) - удаление капиллярной и отчасти поверхностно связанной воды примерно до 45% Со (55% СВд);
  • Сушка - удаление оставшейся поверхностно связанной воды и внутренней воды более чем до 95% СО (5% СВд).

Уплотнение.

Уплотнение представляет собой наиболее простой и наименее затратный вид увеличения концентрации твердых веществ либо отделения твердой фракции от жидкой при обработке осадка сточных вод и используется почти на каждом очистном сооружении. Помимо своей основной цели - сокращения объема - уплотнение оказывает положительное воздействие на процесс очистки в области промежуточного накопления, на стабилизацию процесса, а также на оптимизацию результата и затрат (меньшие емкости, насосы, перемешивающие и нагревательные приборы, а также меньшие транспортные затраты).

Обычно методы уплотнения могут различаться в зависимости от того, действуют ли естественные (гравитационные) или искусственные силы (рис. 2). Также разделяют методы по применяемой технике - на статические и механические.

Рис. 2. Методы уплотнения осадка сточных вод

Обезвоживание.

Цель обезвоживания - максимально возможное уменьшение объема осадка сточных вод в целях подготовки осадка к последующим процессам утилизации (например, компостированию, сушке, сжиганию) и транспортировке. Чаще всего практикуется обезвоживание стабилизационного осадка. В принципе наряду с обычными механическими методами в распоряжении имеются также естественные, однако они по причине большой потребности в площадях и из-за проблем с запахом теряют свое значение.

Сушка.

Если остаточную воду необходимо удалить из осадка после механического обезвоживания, то она должна подвергаться испарению или выпариванию путем сушки. В пользу сушки после обезвоживания говорят следующие доводы:

  • Уменьшается количество осадка сточных вод и повышается теплота сгорания;
  • Улучшается сохраняемость и транспортируемость;
  • Улучшаются возможности перемещения и дозирования;
  • Стабилизируется микробиологическая и гигиеническая безопасность;

Для последующего термического удаления, прежде всего, имеет значение последний пункт, так как достигаемого обезвоживанием содержания твердых веществ часто недостаточно для обеспечения автотермичности процесса сжигания. Автотермичность возможна, как правило, для сброженного осадка при СО = 40-45%, а для необработанного - при СО = 35%.

Однако по техническим причинам может потребоваться дальнейшая сушка перед сжиганием.

Рис. 3. Типы сушилок для сушки осадка сточных вод в зависимости от области применения

Стабилизация.

Стабилизация осадка сточных вод - наиболее важная из основных операций по обработке осадка. Главной целью стабилизации является воздействие на примеси осадка или их разложение, чтобы при дальнейшей обработке осадка сточных вод можно было избежать образования запаха и прочих гигиенических или эстетических нарушений. Фактически этого можно достичь биологическими, химическими и термическими методами.

Требуемое для этого эффективное сокращение примесей, образующих запах, и органических твердых веществ осадка приносит ряд положительных эффектов, а именно:

  • Сокращение количества осадка/твердых веществ;
  • Улучшение возможности обезвоживания осадка;
  • Уменьшение количества возбудителей заболеваний (частичное обеззараживание);
  • Получение биогаза (только при анаэробной стабилизации).

Биологическая аэробная стабилизация.

Аэробная стабилизация осадка основана на тех же процессах обмена веществ, которые известны по биологической очистке сточных вод (рис.4): разлагаемое органическое вещество при потреблении О 2 окисляется до неорганических конечных продуктов (CO 2 , H 2 O, NO 3) (диссимиляция) или при потреблении энергии применяется для строительства нового клеточного вещества и для образования резервных веществ (ассимиляция). В отличие от очистки сточных вод имеющаяся концентрация субстрата должна быть столь мала, чтобы осадок начинал потреблять сам себя, т.е. чтобы показатель гибели микроорганизмов был больше, чем прирост биомассы.

Рис. 4. Процессы обмена веществ при аэробной стабилизации осадка

Биологическая анаэробная стабилизация (сбраживание).

Анаэробное разложение органических составляющих осадка сточных вод (углеводов, жиров, белков) до неорганических конечных продуктов и газов осуществляется в рамках четырехэтапной системы (гидролиз, ацидогенез, ацетогенез и матаногенез) при тесном пространственном соседстве различных групп микроорганизмов. Сначала на стадии гидролиза высокомолекулярные, часто нерастворимые субстраты (углеводы, белки и жиры) переводятся при помощи экзоферментов в низкомолекулярные фрагменты (моносахариды, глицерин, остатки жирных кислот и аминокислоты), из которых затем в ходе ацидогенеза ферментативные бактерии (факультативные или облигатно анаэробные) образуют органические кислоты с короткими цепями (например, масляную, пропионовую, уксусную кислоты), а также спирты, двуокись углерода и водород. Из этих промежуточных продуктов только уксусная кислота (ацетат), СО 2 и Н 2 могут непосредственно преобразовываться ацетотрофными метаногенными бактериями в метан и двуокись углерода. Другие органические кислоты и спирты должны сначала преобразоваться ацетогенными бактериями в уксусную кислоту в процессе ацетогенеза. Затем метаногенные микроорганизмы в процессе метаногенеза образуют из уксусной кислоты, а также из СО 2 и Н 2 конечный продукт - метан. В целом через промежуточный продукт - уксусную кислоту - метаногенными микроорганизмами до метана разлагается около 60-70% всего преобразуемого углерода. Оставшиеся 30-40% получаются непосредственным преобразованием водородными бактериями промежуточно получаемых СО 2 и Н 2 в метан.

Факт 4. Решение в пользу анаэробного сбраживания осадка с использованием биогаза имеет определяющее значение для энергетического баланса очистного сооружения

Получение и использование биогаза.

Получение биогаза и его использование для выработки энергии (тепла и тока) из-за особенностей системы возможно только при анаэробной стабилизации осадка сточных вод. Целью использования биогаза является полное покрытие потребления тепла очистным сооружением и частичное покрытия потребления им электроэнергии.

Обычный сегодня уровень оборудования метатенков и ход технологического процесса при оптимальной эксплуатации обеспечивает высокое газовыделение. Полноценное использование этого энергетического потенциала дает возможность замещения потребляемой от других источников энергии и сокращения результирующего потребления энергии, вследствие чего использование биогаза как вторичного энергоносителя настоятельно рекомендуется с экономической точки зрения.

Обеззараживание.

В целом обеззараживание осадка сточных вод химическими, биологическими и физическими методами возможно при использовании одного из трех следующих механизмов воздействия:

  • Высокой температуры;
  • Повышения значения pH;
  • Сочетания воздействия высокой температуры и повышения значения pH.

Во всех случаях соответствующая продолжительность воздействия этих механизмов является условием инфекционной безопасности осадка. Так как названные механизмы отчасти действуют на других технологических этапах обработки осадка (стабилизации, кондиционирования, сушки), возможно и целесообразно определить обеззараживание как вторичную цель данных технологических этапов. С включением обеззараживания в имеющийся процесс обработки помимо снижения затрат на адаптацию хода процесса никаких других расходов не возникает. Обеззараживание может также осуществляться в отдельном месте со специальными агрегатами (пастеризация).

Инертизация.

Целью инертизации является разрушение либо как можно более полное преобразование органических составляющих и, как следствие, перевод осадка сточных вод в пригодное к хранению или использованию минеральное вещество. Это требуется, прежде всего, когда осадок сточных вод из-за своей структуры и количества не должен использоваться в окружающей местности ни для сельскохозяйственных, ни для земледельческих целей, а должен вывозиться на свалки.

Для инертизации осадка применяются различные термические методы. Вот наиболее известные из них:

  • Сжигание (отдельное и совместное);
  • Газификация;
  • Пиролиз (в сочетании либо со сжиганием, либо с газификацией);
  • Мокрое окисление.

Сжигание.

Сжигание осадка сточных вод дает в основном следующие преимущества:

  • Уменьшение массы и объема путем испарения воды и почти полную минерализацию органической доли в осадке сточных вод;
  • Разрушение содержащихся в осадке вредных органических веществ;
  • Концентрацию и связывание вредных органических веществ в остатке после сжигания и в продуктах газоочистки;
  • Использование собственного содержания энергии в осадке.

Таким образом, в отношении защиты природных ресурсов сжигание осадка сточных вод неоднозначно: с одной стороны, теряются ценные питательные вещества для растений, а с другой - при определенных предельных условиях может накапливаться энергия ископаемых веществ. Использование отходов при сжигании осадка сточных вод может рассматриваться в плане получения энергии и возможного применения образующейся золы либо шлака в производстве строительных материалов.

Газификация.

Под газификацией понимается преобразование содержащегося углеводород твердого или жидкого вещества (например, угля, биомассы, масла) с газификационным средством (кислородом/воздухом, водяным паром) в газообразные продукты. При этом образуется синтез-газ, который в качестве основных компонентов содержит H 2 , H 2 O, CO, CO 2 , CH 4 . В качестве прочих компонентов там содержатся H 2 S, COS, HCl, NH 3 , HCN и - в зависимости от способов - более высокие концентрации углеводородов или смоляных масел. Точный состав синтез-газа зависит от:

  • Состава применяемого вещества;
  • Типа и количества средств(-а) газификации;
  • Условий реакции - температуры и давления;
  • Кинетических предельных условий, определяемых выбранным методом газификации.

При газификации осадка сточных вод по причине наличия в нем минеральной доли наряду с синтез-газом возникают также склонные к образованию отложений и пригодные к применению (например, в производстве стройматериалов) грануляты либо шлаки. Температура должна составлять не менее 850 о С, а при газификации с последующим расплавление шлака - не менее 1300 о С. Обычно трубется сушка осадка до СО > 90%. В зависимости от того, какой метод применяется, осадок сточных вод должен подготавливаться по-разному (табл. 2).

Таблица 2. Методы газификации осадка сточных вод

Дегазация/пиролиз.

Дегазацией или пиролизом (а также полукоксованием, швелеванием или сухой перегонкой) называется термическое разложение органического материала при удалении кислорода. Продукты реакции пиролиза - это, с одной стороны, газы и газообразные углеводороды (пиролизный газ), а с другой стороны, твердый коксообразный остаток, содержащий остающиеся инертные материалы (пиролизный кокс). Пиролизный газ не может храниться долго, а пиролизный кокс нельзя размещать на свалках, поэтому тот и другой сразу после дегазации должны подвергаться сжиганию или газификации. Итак, что касается возникающих продуктов, то дегазация должна рассматриваться как этап предварительной обработки, который ведет к комбинации методов в целях конечной обработки только в сочетании со вторым термическим этапом обработки.

Существуют две основные реализованные комбинации методов: метод полукоксования-сжигания (пиролиз + сжигание) (рис. 5) и метод «Термоселект» (Thermoselect) (пиролиз + газификация) (рис. 6).

Рис. 5. Метод полукоксования и сжигания

Метод полукоксования и сжигания стал первым комбинированным методом, который был успешно опробован в опытных сооружениях.

Рис. 6. Метод «Термоселект»

Методы мокрого окисления.

Понятием «мокрое окисление» в целом описывается беспламенное окисление веществ в водных растворах или в диспергированном виде кислородом, воздухом или другими окисляющими веществами при повышенном давлении и температуре. Основные этапы реакции мокрого окисления - это термическое разложение, гидролиз и последующее окисление. Вместо мокрого окисления методы кратко называются ОНД (LoPrOx) и ФерТех (VerTech).

По методу ФерТех реакция протекает в расположенном под землей реакторе на глубине 1200 -1500 м (рис. 7).

Рис. 7. Метод ФерТех

Мы рассмотрели 4 основных операции по обработке осадка городских сточных вод, включающих в себя множество различных методов и технологий. Использование каждого из этих методов требует экономического и экологического обоснования в каждом отдельном случае применения.

Завершается цикл статей, посвященных очистке городских сточных вод. Мы рассказали о 4 основных этапах очистки сточных вод в полноценной технологической схеме: механическая очистка, биологическая очистка, обеззараживание очищенной воды и обработка осадка - и подробно рассмотрели методы и технологии каждого из них.

При написании статьи использовались материалы пособий: «Очистка сточных вод с использованием централизованных систем водоотведения поселений, городских округов», «Очистка промышленных сточных вод», СпБ: Новый журнал