Все о тюнинге авто

Ранг матрицы вычисление ранга матрицы элементарными преобразованиями. Ранг матрицы. Вычисление ранга матрицы с помощью элементарных преобразований

Теорема (о корректности определения рангов). Пусть все миноры матрицы A m × n {\displaystyle A_{m\times n}} порядка k {\displaystyle k} равны нулю ( M k = 0 {\displaystyle M_{k}=0} ). Тогда ∀ M k + 1 = 0 {\displaystyle \forall M_{k+1}=0} , если они существуют. Шаблон:/рамка

Связанные определения

Свойства

  • Теорема (о базисном миноре): Пусть r = rang ⁡ A , M r {\displaystyle r=\operatorname {rang} A,M_{r}} - базисный минор матрицы A {\displaystyle A} , тогда:
  • Следствия:
  • Теорема (об инвариантности ранга при элементарных преобразованиях): Введём обозначение для матриц, полученных друг из друга элементарными преобразованиями . Тогда справедливо утверждение: Если A ∼ B {\displaystyle A\sim B} , то их ранги равны.
  • Теорема Кронекера - Капелли : Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг её основной матрицы равен рангу её расширенной матрицы. В частности:
    • Количество главных переменных системы равно рангу системы.
    • Совместная система будет определена (её решение единственно), если ранг системы равен числу всех её переменных.
  • Неравенство Сильвестра : Если A и B матрицы размеров m x n и n x k , то
r a n k A B ≥ r a n k A + r a n k B − n {\displaystyle rankAB\geq rankA+rankB-n}

Это частный случай следующего неравенства.

  • Неравенство Фробениуса : Если AB, BC, ABC корректно определены, то
r a n k A B C ≥ r a n k A B + r a n k B C − r a n k B {\displaystyle rankABC\geq rankAB+rankBC-rankB}

Линейное преобразование и ранг матрицы

Пусть A {\displaystyle A} - матрица размера m × n {\displaystyle m\times n} над полем C {\displaystyle C} (или R {\displaystyle R} ). Пусть T {\displaystyle T} - линейное преобразование, соответствующее A {\displaystyle A} в стандартном базисе; это значит, что T (x) = A x {\displaystyle T(x)=Ax} . Ранг матрицы A {\displaystyle A} - это размерность области значений преобразования T {\displaystyle T} .

Методы

Существует несколько методов нахождения ранга матрицы:

  • Метод элементарных преобразований
Ранг матрицы равен числу ненулевых строк в матрице после приведения её к ступенчатой форме при помощи элементарных преобразований над строками матрицы.
  • Метод окаймляющих миноров
Пусть в матрице A {\displaystyle A} найден ненулевой минор k {\displaystyle k} -го порядка M {\displaystyle M} . Рассмотрим все миноры (k + 1) {\displaystyle (k+1)} -го порядка, включающие в себя (окаймляющие) минор M {\displaystyle M} ; если все они равны нулю, то ранг матрицы равен k {\displaystyle k} . В противном случае среди окаймляющих миноров найдется ненулевой, и вся процедура повторяется.

А также рассмотрим важное практическое приложение темы: исследование системы линейных уравнений на совместность .

Что такое ранг матрицы?

В юмористическом эпиграфе статьи содержится большая доля истины. Само слово «ранг» у нас обычно ассоциируется с некоторой иерархией, чаще всего, со служебной лестницей. Чем больше у человека знаний, опыта, способностей, блата и т.д. – тем выше его должность и спектр возможностей. Выражаясь по молодёжному, под рангом подразумевают общую степень «крутизны».

И братья наши математические живут по тем же принципам. Выведем на прогулку несколько произвольных нулевых матриц :

Задумаемся, если в матрице одни нули , то о каком ранге может идти речь? Всем знакомо неформальное выражение «полный ноль». В обществе матриц всё точно так же:

Ранг нулевой матрицы любых размеров равен нулю .

Примечание : нулевая матрица обозначается греческой буквой «тета»

В целях лучшего понимания ранга матрицы здесь и далее я буду привлекать на помощь материалы аналитической геометрии . Рассмотрим нулевой вектор нашего трёхмерного пространства, который не задаёт определённого направления и бесполезен для построения аффинного базиса . С алгебраической точки зрения координаты данного вектора записаны в матрицу «один на три» и логично (в указанном геометрическом смысле) считать, что ранг этой матрицы равен нулю.

Теперь рассмотрим несколько ненулевых векторов-столбцов и векторов-строк :


В каждом экземпляре есть хотя бы один ненулевой элемент, и это уже кое-что!

Ранг любого ненулевого вектора-строки (вектора-столбца) равен единице

И вообще – если в матрице произвольных размеров есть хотя бы один ненулевой элемент, то её ранг не меньше единицы .

Алгебраические векторы-строки и векторы-столбцы в известной степени абстрактны, поэтому снова обратимся к геометрической ассоциации. Ненулевой вектор задаёт вполне определённое направление в пространстве и годится для построения базиса , поэтому ранг матрицы будем считать равным единице.

Теоретическая справка : в линейной алгебре вектор – это элемент векторного пространства (определяемое через 8 аксиом), который, в частности, может представлять собой упорядоченную строку (или столбец) действительных чисел с определёнными для них операциями сложения и умножения на действительное число. С более подробной информацией о векторах можно ознакомиться в статье Линейные преобразования .

линейно зависимы (выражаются друг через друга). С геометрической точки зрения во вторую строку записаны координаты коллинеарного вектора , который ничуть не продвинул дело в построении трёхмерного базиса , являясь в этом смысле лишним. Таким образом, ранг данной матрицы тоже равен единице.

Перепишем координаты векторов в столбцы (транспонируем матрицу ):

Что изменилось с точки зрения ранга? Ничего. Столбцы пропорциональны, значит, ранг равен единице. Кстати, обратите внимание, что все три строки тоже пропорциональны. Их можно отождествить с координатами трёх коллинеарных векторов плоскости, из которых только один полезен для построения «плоского» базиса. И это полностью согласуется с нашим геометрическим смыслом ранга.

Из вышеприведённого примера следует важное утверждение:

Ранг матрицы по строкам равен рангу матрицы по столбцам . Об этом я уже немного упоминал на уроке об эффективных методах вычисления определителя .

Примечание : из линейной зависимости строк следует линейная зависимость столбцов (и наоборот). Но в целях экономии времени, да и в силу привычки я почти всегда буду говорить о линейной зависимости строк.

Продолжим дрессировать нашего любимого питомца. Добавим в матрицу третьей строкой координаты ещё одного коллинеарного вектора :

Помог ли он нам в построении трёхмерного базиса? Конечно, нет. Все три вектора гуляют туда-сюда по одной дорожке, и ранг матрицы равен единице. Можно взять сколько угодно коллинеарных векторов, скажем, 100, уложить их координаты в матрицу «сто на три» и ранг такого небоскрёба всё равно останется единичным.

Познакомимся с матрицей , строки которой линейно независимы . Пара неколлинеарных векторов пригодна для построения трёхмерного базиса. Ранг этой матрицы равен двум.

А чему равен ранг матрицы ? Строки вроде не пропорциональны…, значит, по идее трём. Однако ранг этой матрицы тоже равен двум. Я сложил первые две строки и записал результат внизу, то есть линейно выразил третью строку через первые две. Геометрически строки матрицы соответствуют координатам трёх компланарных векторов , причём среди этой тройки существует пара неколлинеарных товарищей.

Как видите, линейная зависимость в рассмотренной матрице не очевидна, и сегодня мы как раз научимся выводить её «на чистую воду».

Думаю, многие догадываются, что такое ранг матрицы!

Рассмотрим матрицу , строки которой линейно независимы . Векторы образуют аффинный базис , и ранг данной матрицы равняется трём.

Как вы знаете, любой четвёртый, пятый, десятый вектор трёхмерного пространства будет линейно выражаться через базисные векторы. Поэтому, если в матрицу добавить любое количество строк, то её ранг всё равно будет равен трём .

Аналогичные рассуждения можно провести для матриц бОльших размеров (понятно, уже без геометрического смысла).

Определение : ранг матрицы – это максимальное количество линейно независимых строк . Или: ранг матрицы – это максимальное количество линейно независимых столбцов . Да, их количество всегда совпадает.

Из вышесказанного также следует важный практический ориентир: ранг матрицы не превосходит её минимальной размерности . Например, в матрице четыре строки и пять столбцов. Минимальная размерность – четыре, следовательно, ранг данной матрицы заведомо не превзойдёт 4.

Обозначения : в мировой теории и практике не существует общепринятого стандарта для обозначения ранга матрицы, наиболее часто можно встретить: – как говорится, англичанин пишет одно, немец другое. Поэтому давайте по мотивам известного анекдота про американский и русский ад обозначать ранг матрицы родным словом. Например: . А если матрица «безымянная», коих встречается очень много, то можно просто записать .

Как найти ранг матрицы с помощью миноров?

Если бы у бабушки нас в матрице был пятый столбец, то следовало бы вычислить ещё один минор 4-го порядка («синие», «малиновый» + 5-й столбец).

Вывод : максимальный порядок ненулевого минора равен трём, значит, .

Возможно, не все до конца осмыслили данную фразу: минор 4-го порядка равен нулю, но среди миноров 3-го порядка нашёлся ненулевой – поэтому максимальный порядок ненулевого минора и равен трём.

Возникает вопрос, а почему бы сразу не вычислить определитель? Ну, во-первых, в большинстве заданий матрица не квадратная, а во-вторых, даже если у вас и получится ненулевое значение, то задание с высокой вероятностью забракуют, так как оно обычно подразумевает стандартное решение «снизу вверх». А в рассмотренном примере нулевой определитель 4-го порядка и вовсе позволяет утверждать, что ранг матрицы лишь меньше четырёх.

Должен признаться, разобранную задачу я придумал сам, чтобы качественнее объяснить метод окаймляющих миноров. В реальной практике всё проще:

Пример 2

Найти ранг матрицы методом окаймляющих миноров

Решение и ответ в конце урока.

Когда алгоритм работает быстрее всего? Вернёмся к той же матрице «четыре на четыре» . Очевидно, решение будет самым коротким в случае «хороших» угловых миноров :

И, если , то , в противном случае – .

Размышление совсем не гипотетично – существует немало примеров, где всё дело и ограничивается только угловыми минорами.

Однако в ряде случаев более эффективен и предпочтителен другой способ:

Как найти ранг матрицы с помощью метода Гаусса?

Параграф рассчитан на читателей, которые уже знакомы с методом Гаусса и мало-мальски набили на нём руку.

С технической точки зрения метод не отличается новизной:

1) с помощью элементарных преобразований приводим матрицу к ступенчатому виду;

2) ранг матрицы равен количеству строк.

Совершенно понятно, что использование метода Гаусса не меняет ранга матрицы , и суть здесь предельно проста: согласно алгоритму, в ходе элементарных преобразований выявляются и удаляются все лишние пропорциональные (линейно зависимые) строки, в результате чего остаётся «сухой остаток» – максимальное количество линейно независимых строк.

Преобразуем старую знакомую матрицу с координатами трёх коллинеарных векторов:

(1) Ко второй строке прибавили первую строку, умноженную на –2. К третьей строке прибавили первую строку.

(2) Нулевые строки удаляем.

Таким образом, осталась одна строка, следовательно, . Что и говорить, это гораздо быстрее, чем рассчитать девять нулевых миноров 2-го порядка и только потом сделать вывод.

Напоминаю, что в самой по себе алгебраической матрице ничего менять нельзя, и преобразования выполняются только с целью выяснения ранга! Кстати, остановимся ещё раз на вопросе, почему нельзя? Исходная матрица несёт информацию, которая принципиально отлична от информации матрицы и строки . В некоторых математических моделях (без преувеличения) разница в одном числе может быть вопросом жизни и смерти. …Вспомнились школьные учителя математики начальных и средних классов, которые безжалостно срезали оценку на 1-2 балла за малейшую неточность или отклонение от алгоритма. И было жутко обидно, когда вместо, казалось бы, гарантированной «пятёрки» получалось «хорошо» или того хуже. Понимание пришло намного позже – а как иначе доверить человеку спутники, ядерные боеголовки и электростанции? Но вы не беспокойтесь, я не работаю в этих сферах =)

Перейдём к более содержательным заданиям, где помимо прочего познакомимся с важными вычислительными приёмами метода Гаусса :

Пример 3

Найти ранг матрицы с помощью элементарных преобразований

Решение : дана матрица «четыре на пять», значит, её ранг заведомо не больше, чем 4.

В первом столбце, отсутствует 1 или –1, следовательно, необходимы дополнительные действия, направленные на получение хотя бы одной единицы. За всё время существования сайта мне неоднократно задавали вопрос: «Можно ли в ходе элементарных преобразований переставлять столбцы?». Вот здесь – переставили первый-второй столбец, и всё отлично! В большинстве задач, где используется метод Гаусса , столбцы действительно переставлять можно. НО НЕ НУЖНО. И дело даже не в возможной путанице с переменными, дело в том, что в классическом курсе обучения высшей математике данное действие традиционно не рассматривается, поэтому на такой реверанс посмотрят ОЧЕНЬ криво (а то и заставят всё переделывать).

Второй момент касается чисел. В ходе решения полезно руководствоваться следующим эмпирическим правилом: элементарные преобразования по возможности должны уменьшать числа матрицы . Ведь с единицей-двойкой-тройкой работать значительно легче, чем, например, с 23, 45 и 97. И первое действие направлено не только на получение единицы в первом столбце, но и на ликвидацию чисел 7 и 11.

Сначала полное решение, потом комментарии:

(1) Ко второй строке прибавили первую строку, умноженную на –2. К третьей строке прибавили первую строку, умноженную на –3. И до кучи: к 4-й строке прибавили 1-ю строку, умноженную на –1.

(2) Последние три строки пропорциональны. Удалили 3-ю и 4-ю строки, вторую строку переместили на первое место.

(3) Ко второй строке прибавили первую строку, умноженную на –3.

В приведённой к ступенчатому виду матрице две строки.

Ответ :

Теперь ваша очередь мучить матрицу «четыре на четыре»:

Пример 4

Найти ранг матрицы методом Гаусса

Напоминаю, что метод Гаусса не предполагает однозначной жёсткости, и ваше решение, скорее всего, будет отличаться от моего решения. Краткий образец оформления задачи в конце урока.

Какой метод использовать для нахождения ранга матрицы?

На практике зачастую вообще не сказано, какой метод необходимо использовать для нахождения ранга. В такой ситуации следует анализировать условие – для одних матриц рациональнее провести решение через миноры, а для других значительно выгоднее применить элементарные преобразования:

Пример 5

Найти ранг матрицы

Решение : первый способ как-то сразу отпадает =)

Чуть выше я советовал не трогать столбцы матрицы, но когда есть нулевой столбец, либо пропорциональные/совпадающие столбцы, то всё же стОит провести ампутацию:

(1) Пятый столбец нулевой, удалим его из матрицы. Таким образом, ранг матрицы не больше четырёх. Первую строку умножили на –1. Это ещё одна фирменная фишка метода Гаусса, превращающая следующее действие в приятную прогулку:

(2) Ко всем строкам, начиная со второй, прибавили первую строку.

(3) Первую строку умножили на –1, третью строку разделили на 2, четвёртую строку разделили на 3. К пятой строке прибавили вторую строку, умноженную на –1.

(4) К пятой строке прибавили третью строку, умноженную на –2.

(5) Последние две строки пропорциональны, пятую удаляем.

В результате получено 4 строки.

Ответ :

Стандартная пятиэтажка для самостоятельного исследования:

Пример 6

Найти ранг матрицы

Краткое решение и ответ в конце урока.

Следует отметить, что словосочетание «ранг матрицы» не так часто встретишь на практике, и в большинстве задач можно вообще обойтись без него. Но существует одно задание, где рассматриваемое понятие является главным действующим лицом, и в заключение статьи мы рассмотрим это практическое приложение:

Как исследовать систему линейных уравнений на совместность?

Нередко помимо решения системы линейных уравнений по условию предварительно требуется исследовать её на совместность, то есть доказать, что какое-либо решение вообще существует. Ключевую роль в такой проверке играет теорема Кронекера-Капелли , которую я сформулирую в необходимом виде:

Если ранг матрицы системы равен рангу расширенной матрицы системы , то система совместна, причём, если данное число совпадает с количеством неизвестных, то решение единственно.

Таким образом, для исследования системы на совместность нужно проверить равенство , где – матрица системы (вспоминаем терминологию из урока Метод Гаусса ), а – расширенная матрица системы (т.е. матрица с коэффициентами при переменных + столбец свободных членов).

Рангом матрицы называется наибольший порядок ее миноров, отличных от нуля. Ранг матрицы обозначают или .

Если все миноры порядка данной матрицы равны нулю, то все миноры более высокого порядка данной матрицы также равны нулю. Это следует из определения определителя. Отсюда вытекает алгоритм нахождения ранга матрицы.

Если все миноры первого порядка (элементы матрицы ) равны нулю, то . Если хотя бы один из миноров первого порядка отличен от нуля, а все миноры второго порядка равны нулю, то . Причем, достаточно просмотреть только те миноры второго порядка, которые окаймляют ненулевой минор первого порядка. Если найдется минор второго порядка отличный от нуля, исследуют миноры третьего порядка, окаймляющие ненулевой минор второго порядка. Так продолжают до тех пор, пока не придут к одному из двух случаев: либо все миноры порядка , окаймляющие ненулевой минор -го порядка равны нулю, либо таких миноров нет. Тогда .

Пример 10. Вычислить ранг матрицы .

Минор первого порядка (элемент ) отличен от нуля. Окаймляющий его минор тоже не равен нулю.

Все эти миноры равны нулю, значит .

Приведенный алгоритм нахождения ранга матрицы не всегда удобен, поскольку связан с вычислением большого числа определителей. Наиболее удобно пользоваться при вычислении ранга матрицы элементарными преобразованиями, при помощи которых матрица приводится к столь простому виду, что очевидно, чему равен ее ранг.

Элементарными преобразованиями матрицы называют следующие преобразования:

Ø умножение какой-нибудь строки (столбца) матрица на число, отличное от нуля;

Ø прибавление к одной строке (столбцу) другой строки (столбца), умноженной на произвольное число.

Полужордановым преобразованием строк матрицы:

с разрешающим элементом называется следующая совокупность преобразований со строками матрицы:

Ø к первой строке прибавить ю, умноженную на число и т.д.;

Ø к последней строке прибавить ю, умноженную на число .

Полужордановым преобразованием столбцов матрицы с разрешающим элементом называется следующая совокупность преобразований со столбцами матрицы:

Ø к первму столбцу прибавить й, умноженный на число и т.д.;

Ø к последнему столбцу прибавить й, умноженный на число .

После выполнения этих преобразований получается матрица:

Полужорданово преобразование строк или столбцов квадратной матрицы не изменяет ее определителя.

Элементарные преобразования матрицы не изменяют ее ранга. Покажем на пример, как вычислить ранг матрицы, пользуясь элементарными преобразованиями. строк (столбцов) линейно зависимы.

Элементарными называются следующие преобразования матрицы:

1) перестановка двух любых строк (или столбцов),

2) умножение строки (или столбца) на отличное от нуля число,

3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число.

Две матрицы называются эквивалентными , если одна из них получается из другой с помощью конечного множества элементарных преобразований.

Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы А и В эквивалентны, то это записывается так: A ~ B.

Канонической матрицей называется матрица, у которой в начале главной диагонали стоят подряд несколько единиц (число которых может равняться нулю), а все остальные элементы равны нулю, например,

При помощи элементарных преобразований строк и столбцов любую матрицу можно привести к канонической. Ранг канонической матрицы равен числу единиц на ее главной диагонали.

Пример 2 Найти ранг матрицы

А=

и привести ее к каноническому виду.

Решение. Из второй строки вычтем первую и переставим эти строки:

.

Теперь из второй и третьей строк вычтем первую, умноженную соответственно на 2 и 5:

;

из третьей строки вычтем первую; получим матрицу

В = ,

которая эквивалентна матрице А, так как получена из нее с помощью конечного множества элементарных преобразований. Очевидно, что ранг матрицы В равен 2, а следовательно, и r(A)=2. Матрицу В легко привести к канонической. Вычитая первый столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы первой строки, кроме первого, причем элементы остальных строк не изменяются. Затем, вычитая второй столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы второй строки, кроме второго, и получим каноническую матрицу:

.

Теоре́ма Кро́некера - Капе́лли - критерий совместности системы линейных алгебраических уравнений:

Для того чтобы линейная система являлась совместной, необходимо и достаточно, что бы ранг расширенной матрицы этой системы был равен рангу ее основной матрицы.

Доказательство (условия совместности системы)

Необходимость

Пусть система совместна. Тогда существуют числа такие, что . Следовательно, столбец является линейной комбинацией столбцов матрицы . Из того, что ранг матрицы не изменится, если из системы его строк (столбцов) вычеркнуть или приписать строку (столбец), которая является линейной комбинацией других строк (столбцов) следует, что .

Достаточность

Пусть . Возьмем в матрице какой-нибудь базисный минор. Так как , то он же и будет базисным минором и матрицы . Тогда, согласно теореме о базисном миноре , последний столбец матрицы будет линейной комбинацией базисных столбцов, то есть столбцов матрицы . Следовательно, столбец свободных членов системы является линейной комбинацией столбцов матрицы .

Следствия

    Количество главных переменных системы равно рангу системы.

    Совместная система будет определена (её решение единственно), если ранг системы равен числу всех её переменных.

Однородная система уравнений

Предложение 15 . 2 Однородная система уравнений

всегда является совместной.

Доказательство . Для этой системы набор чисел , , , является решением.

В этом разделе мы будем использовать матричную запись системы: .

Предложение 15 . 3 Сумма решений однородной системы линейных уравнений является решением этой системы. Решение, умноженное на число, тоже является решением.

Доказательство . Пусть и служат решениями системы . Тогда и . Пусть . Тогда

Так как , то -- решение.

Пусть -- произвольное число, . Тогда

Так как , то -- решение.

Следствие 15 . 1 Если однородная система линейных уравнений имеет ненулевое решение, то она имеет бесконечно много различных решений.

Действительно, умножая ненулевое решение на различные числа, будем получать различные решения.

Определение 15 . 5 Будем говорить, что решения системы образуют фундаментальную систему решений , если столбцы образуют линейно независимую систему и любое решение системы является линейной комбинацией этих столбцов.

>>Ранг матрицы

Ранг матрицы

Определение ранга матрицы

Рассмотрим прямоугольную матрицу. Если в этой матрице выделить произвольно k строк и k столбцов, то элементы, стоящие на пересечении выделенных строк и столбцов, образуют квадратную матрицу k-го порядка. Определитель этой матрицы называется минором k-го порядка матрицы А. Очевидно, что матрица А обладает минорами любого порядка от 1 до наименьшего из чисел m и n. Среди всех отличных от нуля миноров матрицы А найдется по крайней мере один минор, порядок которого будет наибольшим. Наибольший из порядков миноров данной матрицы, отличных от нуля, называется рангом матрицы. Если ранг матрицы А равен r , то это означает, что в матрице А имеется отличный от нуля минор порядка r , но всякий минор порядка, большего чем r , равен нулю. Ранг матрицы А обозначается через r(A). Очевидно, что выполняется соотношение

Вычисление ранга матрицы с помощью миноров

Ранг матрицы находится либо методом окаймления миноров, либо методом элементарных преобразований. При вычислении ранга матрицы первым способом следует переходить от миноров низших порядков к минорам более высокого порядка. Если уже найден минор D k-го порядка матрицы А, отличный от нуля, то требуют вычисления лишь миноры (k+1)-го порядка, окаймляющие минор D, т.е. содержащие его в качестве минора. Если все они равны нулю, то ранг матрицы равен k .

Пример 1. Найти методом окаймления миноров ранг матрицы

.

Решение. Начинаем с миноров 1-го порядка, т.е. с элементов матрицы А. Выберем, например, минор (элемент) М 1 = 1, расположенный в первой строке и первом столбце. Окаймляя при помощи второй строки и третьего столбца, получаем минор M 2 = , отличный от нуля. Переходим теперь к минорам 3-го порядка, окаймляющим М 2 . Их всего два (можно добавить второй столбец или четвертый). Вычисляем их: = 0. Таким образом, все окаймляющие миноры третьего порядка оказались равными нулю. Ранг матрицы А равен двум.

Вычисление ранга матрицы с помощью элементарных преобразований

Элементарными называются следующие преобразования матрицы:

1) перестановка двух любых строк (или столбцов),

2) умножение строки (или столбца) на отличное от нуля число,

3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число.

Две матрицы называются эквивалентными , если одна из них получается из другой с помощью конечного множества элементарных преобразований.

Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы А и В эквивалентны, то это записывается так: A ~ B.

Канонической матрицей называется матрица, у которой в начале главной диагонали стоят подряд несколько единиц (число которых может равняться нулю), а все остальные элементы равны нулю, например,

.

При помощи элементарных преобразований строк и столбцов любую матрицу можно привести к канонической. Ранг канонической матрицы равен числу единиц на ее главной диагонали.

Пример 2 Найти ранг матрицы

А=

и привести ее к каноническому виду.

Решение. Из второй строки вычтем первую и переставим эти строки:

.

Теперь из второй и третьей строк вычтем первую, умноженную соответственно на 2 и 5:

;

из третьей строки вычтем первую; получим матрицу

В = ,

которая эквивалентна матрице А, так как получена из нее с помощью конечного множества элементарных преобразований. Очевидно, что ранг матрицы В равен 2, а следовательно, и r(A)=2. Матрицу В легко привести к канонической. Вычитая первый столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы первой строки, кроме первого, причем элементы остальных строк не изменяются. Затем, вычитая второй столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы второй строки, кроме второго, и получим каноническую матрицу:

.