Все о тюнинге авто

Термисторная защита электродвигателей и реле термисторной защиты двигателя. Аварийные ситуации в работе асинхронного двигателя и методы защиты Термическая защита электродвигателей

Сложность конструкции тепловых реле к пускателям электродвигателей, недостаточная надежность систем защиты на их основе, привели к созданию тепловой защиты, реагирующей непосредственно на температуру обмоток электродвигателя. При этом датчики температуры устанавливаются на обмотке двигателя. Другими словами, осуществляется непосредственный контроль измерения нагрева двигателя. Прямая защита двигателя через контроль температуры обмотки даже при тяжелейших условиях окружающей среды обеспечивает полную защиту двигателя, оснащенного температурными датчиками с положительным коэффициентом сопротивления (PTC). Температурные датчики PTC встроены в обмотки электродвигателя (укладываются в обмотку двигателя изготовителем двигателей).

Термочувствительные защитные устройства: термисторы, позисторы

В качестве датчиков температуры получили применение термисторы и позисторы (РТС – резисторы) - полупроводниковые резисторы, изменяющие свое сопротивление от температуры. Термисторы представляют собой полупроводниковые резисторы с большим отрицательным ТСК. При увеличении температуры сопротивление термистора уменьшается, что используется для схемы отключения двигателя. Для увеличения крутизны зависимости сопротивления от температуры, термисторы, наклеенные на три фазы, включаются параллельно (рисунок 1).

Рисунок 1 – Зависимость сопротивления позисторов и термисторов от температуры: а – последовательное соединение позисторов; б – параллельное соединение термисторов

Позисторы являются нелинейными резисторами с положительным ТСК. При достижении определенной температуры сопротивление позистора скачкообразно увеличивается на несколько порядков.

Для усиления этого эффекта позисторы разных фаз соединяются последовательно. Характеристика позисторов показана на рисунке.

Защита с помощью позистоpoв является более совершенной. В зависимости от класса изоляции обмоток двигателя берутся позисторы на температуру срабатывания =105, 115, 130, 145 и 160 . Эта температура называется классификационной. Позистор резко меняет сопротивление при температура за время не более 12 с. При сопротивление трёх последовательно включенных позисторов должно быть не более 1650 Ом, при температуре их сопротивление должно быть не менее 4000 Ом.

Гарантийный срок службы позисторов 20000 ч. Конструктивно позистор представляет собой диск диаметром 3.5 мм и толщиной 1 мм, покрытый кремне-органической эмалью, создающей необходимую влагостойкость и электрическую прочность изоляции.

Рассмотрим схему позисторной защиты, показанную на рисунке 2.

К контактам 1, 2 схемы (рисунок 2, а) подключаются позисторы, установленные на всех трёх фазах двигателя (рисунок 2, б). Транзисторы VТ1, VT2 включены по схеме триггера Шмидта и работают в ключевом режиме. В цепь коллектора транзистора VT3 оконечного каскада включено выходное реле К, которое подает сигнал на обмотку пускателя электродвигателя.

При нормальной температуре обмотки двигателя и связанных с ним позисторов сопротивление последних мало. Сопротивление между точками 1-2 схемы также мало, транзистор VT1 закрыт (на базе малый отрицательный потенциал), транзистор VТ2 открьт (большой потенциал). Отрицательный потенциал на коллекторе транзисторе VT3 мал, и он закрыт. При этом ток в обмотке реле К недостаточен для его срабатывания.

При нагреве обмотки двигателя сопротивление позисторов увеличивается, и при определенном значении этого сопротивления отрицательный потенциал точки 3 достигает напряжения срабатывания триггера. Релейный режим триггера обеспечивается эммитерной обратной связью (сопротивление в цепи эммитера VТ1) и коллекторной обратной связью между коллектором VT2 и базой VT1. При срабатывании триггера VТ2 закрывается, а VT3 - открывается. Срабатывает реле К, замыкая цепи сигнализации и размыкая цепь электромагнита пускателя, после чего обмотка статора отключается от напряжения сети, двигатель останавливается.

Рисунок 2 – Аппарат позисторной защиты с ручным возвратом: а – принципиальная схема; б – схема подключения к двигателю

После охлаждения двигателя его пуск возможен после нажатия кнопки «возврат», при котором триггер возвращается в начальное положение.

В современных электродвигателях позисторы защиты устанавливаются на лобовой части обмоток двигателя. В двигателях прежних разработок позисторы можно приклеивать к лобовой части обмоток.

Достоинства и недостатки термисторной (позисторной) защиты

  • Термочувствительная защита электродвигателей предпочтительней в тех случаях, когда по току невозможно определить с достаточной точностью температуру электродвигателя. Это касается, прежде всего, электродвигателей с продолжительным периодом запуска, частыми операциями включения и отключения (повторно-кратковременный режим работы) или двигателей с регулируемым числом оборотов (при помощи преобразователей частоты). Термисторная защита эффективна также при сильном загрязнении электродвигателей или выходе из строя системы принудительного охлаждения.
  • Термисторная защита эффективна также при сильном загрязнении двигателей или выходе из строя принудительного охлаждения. Следующей областью применения термисторной защиты является температурный контроль в трансформаторах, жидкостях и подшипниках для их защиты от перегрева.
  • Недостатками термисторной защиты является то, что с термисторами или позисторами выпускаются далеко не все типы электродвигателей. Это особенно касается электродвигателей отечественного производства. Термисторы и позисторы могут устанавливаться в электродвигатели только в условиях стационарных мастерских. Температурная характеристика термистора достаточно инерционна и сильно зависит от температуры окружающей среды и от условий эксплуатации самого электродвигателя.
  • Термисторная защита требует наличия специального электронного блока: термисторного устройства защиты электродвигателей, теплового или электронного реле перегрузки, в которых находятся блоки настройки и регулировки, а также выходные электромагнитные реле, служащие для отключения катушки пускателя или электромагнитного расцепителя.

Виды термисторных реле различных производителей:

Реле термисторной защиты двигателя ELCO (Чехия)

  • контролирует температуру обмотки электродвигателя в температ. интервале, данном сопротивл. PTC термистора фиксированный настроенный уровень коммутации
  • в качестве считывающего элемента применяетсчя термистор PTC встроенный в обмотку электродвигателя его производителем, возможно использование внешнего PTC сенсора
  • функция ПАМЯТЬ - реле в случае ошибки блокируется до момента вмешательства персонала (наж. кнопки RESET)
    RESET ошибочного состояния:
    a) кнопкой на передней панели
    b) внешним контактом (на расстоянии по двум проводам)
  • функция контроля короткого замыкани или отключения сенсора, состояние нарушения сенсора указывает мигающий красный светодиодный индикатор
  • выходной контакт 2x переключ. 8 A / 250 V AC1
  • состояние превышение температуры обмотки двигателя указывает светящийся красный светодиодный индикатор
  • универсальное напряжение питания AC/ DC 24 - 240 V
  • клеммы сенсора не изолированы гальванически, но их можно замкнуть с клеммой PE без поломки устройства, в случае питания от сети должен быть подключен нейтраль на клемму A2

Реле термисторной защиты электродвигателя (МЕАНДР, Россия)


  • контролирует температуру двигателей, оснащенные позисторами (термисторы с положительным температурным коэффициентом - РТС резисторы), встроенные в обмотку двигателя (производителем).
  • коммутируемый ток 5А/250В (пиковый 16А), контакты реле 1з+1р
  • индикация рабочих состояний:
  • (напряжение питания, срабатывание реле, перегрев двигателя, КЗ датчиков)
  • напряжение питания АС 220, 100, 380 (по исполнениям)

Реле контроля температуры двигателя 230VAC (PTC), 1 CO, TELE Серия ENYA (Австрия)


  • <1,5kΩ клеммы T1-T2 или T1-T3
  • напряжений питания 230V AC
  • максимальный коммутируемый ток 250V, 5A AC (1 перекидной)

Реле контроля температуры двигателя (PTC), 2ПК (требуется модуль TR2) TELE Серия GAMMA (Австрия)

  • контролируемая величина PTC (контр. температуры двигателя на повышение) от 6 PTC датчиков
  • диапазон измерения общее сопр. холодн. <1,5kΩ клеммы T1-T2
  • диапазон напряжений питания спомощью модуля питания TR2 или SNT2 * (устанавливается в реле)
  • напряжений питания 230V AC
  • максимальный коммутируемый ток 250V, 5A AC (2 перекидных)

Реле термисторной защиты двигателя F&F ЕвроАвтоматика (Белоруссия)


  • контроль температуры электродвигателей, генераторов, трансформаторов и защита их от перегрева
  • датчики РТС устанавливаются в обмотках электродвигателя производителем и в комплект не входят (термисторы РТС соединенные последовательно от 1 до 6 штук)
  • напряжение питания 230V AC и 24V AC/DC
  • максимальный комутируемый ток 16А, 1 переключающий контакт
  • контроль КЗ в цепи термисторных датчиков
  • с ростом температуры электродвигателя растет сопротивление цепи термисторных датчиков, при достижении более 3000 Ом питание отключается (реле разрывает цепь питания катушки контактора), включение происходит автоматически при снижении температуры и соответсвенно сопротивления до 1800 Ом.

Реле контроля температуры двигателя MTR01, MTR02 BMR (Чехия)

  • Реле контролирует температуру обмотки электрического двигателя. Принцип действия основан на измерении сопротивления термистора, встроенного в двигатель.
  • Устройство также контролирует короткое замыкание или пропадание фазы. Реле имеет один выходной перекидной контакт на ток 8 А.
  • Модификация MTR01 24V/ MTR02 24V предназначена для напряжения питания 24 В. Остальные параметры.
  • MTR02 с гальванической изоляцией
  • Сопротивление PTC в раб. режиме 50 Ω < PTC < 3,3 кΩ
  • Сопротивление PTC в авар. режиме PTC > 3,3кΩ или PTC < 50Ω
  • Отключение аварийного режима PTC < 1,8 кΩ + RESET
  • Номинальный ток 8 A (15А - пиковый ток), 1 перекидной контакт

Реле контроля температуры двигателя BTR-12E BTR Electronic Systems, "METZ CONNECT" (Германия)


  • реле термистор применяется для защиты моторов от термических перегрузок, возникающих при механических перегрузках в приводах или при использовании электродвигателей под перенапряжением. Для регистрации температуры применяется РТС = сопротивление с позитивным температурным коэффициентом, которые позиционируются в месте наибольшего нагрева.
  • выпускается с памятью ошибки и без ЗУ (запоминающее устройство)
  • напряжение питания 230V AC / 24V AC/DC
  • предельно допустимый ток контактов 6А (1 или 2 переключающих контакта)

Реле термической защиты Grundfos MS 220 C Grundfos/Ziehl (Германия)


  • Реле Grundfos MS 220C предназначено для преобразования термисторного сигнала в релейный и передачи его на пускатель в насосах с мощностью двигателя более 3.0 кВт.
  • напряжение питания AC/DC 24 - 240V (и др. в зависимости от исполнения 110,400V)
  • 1 CO, ток контактов 6А

Реле контроля температуры двигателя серии и Finder (Италия)

Термисторное реле определения температуры для промышленного применения.

Реле Finder термисторной защиты двигателя

  • 1 нормально разомкнутый контакт, без памяти отказов

Реле Finder термисторной защиты двигателя (с памятью)

  • Термисторное реле с памятью отказов
  • 2 перекидных контакта
  • Питание 24 В переменного/постоянного тока или 230 В переменного тока
  • Защита от перегрузок в соответствии с EN 60204-7-3
  • Положительная предохранительная логическая схема размыкает контакт, если значения измерений выходят за пределы приемлемого диапазона
  • Индикация состояния с помощью светодиода
  • Определение температуры с положительным температурным коэффициентом (PTC)
  • Память отказов выбирается переключателем
  • Выявление короткого замыкания с помощью PTC
  • Выявление обрыва провода с помощью PTC

Практически нет в эксплуатации техники, где не использовался бы электрический . Этот вид электромеханических приводов самой разной конфигурации применяется повсеместно. С конструктивной точки зрения, электромотор – оборудование несложное, вполне понятное и простое. Однако работа электродвигателя сопровождается значительными нагрузками разного характера. Именно поэтому на практике применяются реле защиты двигателя, функциональность которых также носит разносторонний характер. Степень эффективности, на которую рассчитана защита электрического двигателя, как правило, определяется схемными решениями внедрения реле и датчиков контроля.

Применительно к малозначимым сервисным моторам, для автоматического отключения используется мгновенное реле с обратно-зависимым временем реагирования на фазные перегрузки по току.


Схема защиты двигателя от перегрузки по току и замыканий на землю: 1, 2, 3 — трансформаторы тока; 4, 5, 6 — устройства отсечки по току; Ф1, Ф2, Ф3 — линейные фазы; 7 — земля

Реле чередования фаз обычно настраиваются на 3,5-4 кратное превышение рабочего тока двигателя, с учётом достаточной задержки по времени, чтобы исключить срабатывание в моменты запуска мотора.

Для сервисных двигателей высокой значимости реле тока с обратно-зависимым временем срабатывания, как правило, не используются. Причиной тому является задействованный автоматический выключатель непосредственно в цепи двигателя.

Перегрев статорных обмоток

Критичное состояние, в основном обусловленное непрерывной перегрузкой, торможением ротора или дисбалансом тока статора. Для полной защиты, в данном случае, трёхфазный двигатель необходимо оснастить элементами контроля перегрузки на каждой фазе.

Здесь для защиты малозначимых сервисных двигателей обычно используется защита от перегрузки либо прямое срабатывание на отключение от источника питания в случае перегрузки.

Если номинальная мощность двигателя превышает 1000 кВт, вместо одиночного реле с резистивным датчиком температуры, как правило, используется реле обратно-зависимого времени срабатывания по току.


Термисторы предельной температуры для статора двигателя: 1 — залуженная часть проводника 7-10 мм; 2 — размер длины 510 — 530 мм; 3 — длина термистора 12 мм; 4 — диаметр термистора 3 мм; Дуговые соединения длиной 200 мм

Для значимых моторов автоматическое отключение применяют по желанию. В качестве главного защитника от перегрева статорных обмоток используется тепловое реле.

Фактор перегрева ротора (фазного)

Защита от перегрева ротора часто встречается в двигателях с раневым (фазным) ротором. Увеличение тока ротора отражается на токе статора, что требует включения защиты от превышения тока статора.

Настройка реле защиты статора по току в целом составляет величину, равную току полной нагрузки, увеличенному в 1,6 раза. Этого значения вполне достаточно, чтобы определить перегрев фазного ротора и включить блокировку.

Защита от пониженного напряжения

Электродвигатель потребляет чрезмерный ток при работе под напряжением ниже установленной нормы. Поэтому защита от недостатка напряжения или перенапряжения должна обеспечиваться датчиками перегрузки или чувствительными температурными элементами.

Чтобы избежать перегрева, двигатель необходимо обесточить на 40-50 минут даже в случае небольших перегрузок, превышающих 10 — 15% норматива.


Классический вариант термального контроля статорной обмотки: Т — датчики температуры, встроенные непосредственно среди обмоточных проводников

Защитное реле следует использовать для контроля нагрева ротора двигателя из-за токов обратной последовательности, возникающих в статоре по причине дисбаланса напряжения питания.

Дисбаланс и пофазный сбой

Несбалансированное трехфазное питание также вызывает протекание тока обратной последовательности в обмотках статора двигателя. Подобное состояние вызывает перегрев обмотки статора и ротора (фазного).

Несбалансированное состояние, кратковременно передаваемое двигателю, необходимо контролировать и поддерживать на таком уровне, чтобы избежать появления непрерывного состояния дисбаланса.

Предпочтительно реле контроля межфазного замыкания питать от положительной фазы, а для защиты от замыканий на землю использовать дифференциальное реле мгновенной отсечки, подключенное в цепь контура трансформатора тока.

Непредусмотренный реверс фазы

В некоторых случаях реверс фазы видится опасным явлением для мотора. Например, такое состояние может негативно отражаться на работе лифтового оборудования, кранов, подъемников, некоторых видов общественного транспорта.

Здесь обязательно следует предусматривать защиту от реверса фаз – специализированное реле. Работа реле реверса фазы основана на электромагнитном принципе. Прибор содержит дисковый двигатель, приводимый в движение магнитной системой.


Плата и схема устройства реверса фазы: 1 — автоматический выключатель или плавкая вставка; 2 — защита от перегрузки; 3 — фаза текущая; 4 — реверс фазы; 5 — электродвигатель

Если отмечается правильная последовательность фаз, диск формирует крутящий момент в положительном направлении. Следовательно, вспомогательный контакт удерживается в закрытом положении.

Когда фиксируется реверс фазы, крутящий момент диска изменяется на противоположное направление. Следовательно, вспомогательный контакт переключается в открытое положение.

Эта система коммутации используется для защиты, в частности – для управления автоматическим выключателем.

Традиционная защита асинхронных двигателей

Защиты трехфазных асинхронных двигателей небольшой мощности показана на рисунке ниже. Магнитный контактный пускатель содержит группу кнопок пуска и останова, связанных соответствующими вспомогательными контактами, защитными устройствами перегрузки или недогрузки.

Стартовая кнопка (КН1) представляет собой обычный прямой контактный переключатель, который обычно удерживается в нормально открытом состоянии усилием пружины. В свою очередь кнопка останова (КН2) удерживается в состоянии нормально закрытом также посредством пружины.

Стоит нажать кнопку пуска (замкнуть линию), рабочая катушка контактора получает питание через контакты (ВК) реле перегрузки (Р1-Р3). Образованное магнитное поле катушки притягивает металлический сердечник контактора.

В результате замыкаются три главных контакта (К1-К3) магнитного пускателя, через которые электродвигатель (М) соединяется с трёхфазным источником питания.


Схема пуска, останова и аварийной блокировки: П1, П2, П3 — плавкие предохранители; Р1, Р2, Р3 — токовые реле; ВК — контакты блокировки; КП — катушка пускателя; К1, К2, К3 — контакторы пускателя; КН1 — кнопка пуска; КН2 — кнопка останова; М- мотор

Пока кнопка «пуск» (КН1) замкнута, цепь питания проходит через контакты кнопки «стоп» (КН2) и катушку магнитного пускателя (КП). Между тем, цепь питания катушки индуктивности теперь уже поддерживается иной схемой.

Поддержка осуществляется вспомогательными контактами (ВК) реле с токовым управлением (Р1-Р3), поэтому возврат кнопки «пуск» в исходное положение ситуацию не изменит. Контактор останется замкнутым, а двигатель в работе.

Как работает функционал защиты

Обычно двигатели мощностью до 20 кВт рассматриваются как маломощные аппараты. Максимум защиты таких моторов обеспечивается:

  • предохранителями с высокой отключающей способностью,
  • биметаллическими реле и
  • реле напряжения.

Все эти элементы защиты собраны, как правило, в структуре магнитного пускателя.

Чаще всего выгорание линейных предохранителей защиты двигателя отмечается на одной фазе. Этот обрыв может оставаться не обнаруженным, даже если двигатель защищён обычным биметаллическим реле.


Структура предохранителя: 1 — торцевая крышка; 2 — кремнезём; 3 — фарфоровый корпус; 4 — выступ крепежа; 5 — предохраняющий элемент; 6 — оловянный сплав; 7 — конструкция управления дугой

Обнаружение обрыва фазы зачастую не дают и реле напряжения, подключенные на каждой линии. Несмотря на обрыв одной фазы, схемой обмоток электродвигателя поддерживается значительная обратная ЭДС на клемме фазы, находящейся в обрыве.

Поэтому уровень напряжения на реле остаётся достаточно высоким, что не приводит к срабатыванию. Однако сложности обнаружения подобных дефектов вполне преодолимы.

Достаточно использовать дополнительный набор из трех реле, управляемых по току. Подключение наглядно демонстрирует схема защиты двигателя, показанная выше.

Защитные функции токовых реле

Управляемые током реле — устройства простые, но обладающие эффектом мгновенной отсечки. Конструктивно прибор состоит из следующих деталей:

  • катушка тока;
  • один или несколько нормально разомкнутых контактов.

Механизм движения контактов управляются ЭДС катушки тока. Традиционно токовые реле подключаются на каждой фазе последовательно с плавкими защитными предохранителями.

Когда срабатывает магнитный пускатель, электродвигатель запускается, ток питания течёт через катушку. Магнитодвижущая сила катушки (ЭДС) воздействует на механику и замыкает контакты реле. Цепь питания мотора замыкается.


Блокиратор токовой перегрузки: 1 — электрические коннекторы; 2 — индикатор отключения; 3 — тест; 4 — клеммы для проводников двигателя; 5 — сигнальный контакт; 6 — кнопка сброса; 7 — селектор «авто» или «ручной»; 8 — кнопка останова; 9 — шкала установки тока; 10 — механическая защёлка

Если, вдруг, случится обрыв фазы, ток катушки индуктивности снижается, контакты соответствующего реле переключаются в нормально-открытое положение.

Учитывая, что контакты всех трех защитных реле соединяются последовательно, цепь питания мотора разомкнётся.

Защитные функции тепловых реле

Все классические конструкции моторов предполагают использование опорных и упорных подшипников. В зависимости от мощности электродвигателей, может устанавливаться тот или иной вид подшипников, либо оба вида вместе.

Неисправность подшипника любого вида нередко приводит к полной остановке вращения ротора. Внезапное , в свою очередь, провоцирует резкий подъём тока статорной обмотки двигателя и последующий перегрев.

Здесь токовая защита не способна удовлетворительно реагировать на событие. Как правило, этот вид защиты настроен с учётом стартового тока двигателя и короткой временной составляющей. Проблема клина может быть решена только путём внедрения защиты от тепловой перегрузки.

Также защиту в данном случае допустимо обеспечить индивидуальным модулем, настроенным на определенное время срабатывания по току. В случае применения тепловой отсечки, разумно ставить датчик температуры, встроенный непосредственно в подшипниковый узел.

Теоретический минимум по защите электродвигателей

Для защиты электродвигателей от коротких замыканий и перегрузок используют сочетание предохранителей с магнитными пускателями, а также автоматические выключатели. Отсутствие в ряде случаев технической возможности постоянной настройки тепловой защиты выдвинули новые требования к разработке встроенной температурной защиты.

Как показывает практика, встроенная температурная защита эффективно отключает электродвигатели при длительных перегрузках, неправильных процессах пуска и торможения, повышенной частоте включении, обрыве фаз, колебаниях напряжения сети в пределах 70...110% от номинального значения, заклинивании приводного механизма, включении электродвигателя с заклиненным ротором. Повышенной температуре окружающей среды, нарушениях в системе охлаждения.

Температурная защита состоит из температурных датчиков и управляющего устройства.

Температурными датчиками служат полупроводниковые термосопротивления - позисторы пли резисторы, встроенные в лобовую часть обмотки статора (по одному в каждую фазу).

Характерное свойство - высокая чувствительность в узком интервале температур. Например, промышленный позистор СТ5-1, который можно использовать в схеме встроенной температурной защиты электродвигателя, имеет в интервале температур от 60 до 100° практически постоянное сопротивление, а в интервале от 120 до 130° его сопротивление увеличивается в несколько тысяч раз.

В качестве температурных датчиков для устройств встроенной защиты применяют кобальтомарганцевые термосопротивления типа ТР-33, работающие в релейном режиме. Имеется шесть вариантов рабочих групп термосоиротивлений ТР-33, каждой из которых соответствует своп минимальная и максимальная рабочая температура в пределах 5°.

Встроенную защиту с термосопротивлениями ТР-33 настраивают в зависимости от класса изоляции защищаемого электродвигателя. Настройку осуществляют либо изменением напряжения, подаваемого на термосопротивлеиие. либо шунтированиям термосопротивленнй добавочными сопротивлениями.

Наибольшее практическое применение для датчиков встроенной температурной зашиты электродвигателей находят терморезисторы с положительным CT14-1A (t°ср-130°) или СТ 14-1 Б (t°ср -105°).

Терморезисторы СТ14-1А изготовляют в виде дисков диаметром 3 и толщиной 1,5 мм. Комплект таких датчиков (три диска из расчета один на фазу) является чувствительным органом защиты, подающим сигнал в управляющее устройство.

В настоящее время выпускают два вида устройств встроенной температурой защиты - УВТЗ-1 и УВТЗ-4А. Принцип их действия одинаков, хотя схема и конструктивное оформление различны.

Устройства температурной защиты унифицированы для всех типоразмеров электродвигателей, взаимозаменяемы и не требуют регулировки и настройки при монтаже и эксплуатации.

Управляющее устройство служит для усиления сигнала, поступающего от встроенных в обмотку статора электродвигателя температурных датчиков, и преобразования в сигнал, управляющий отключением (типа ПМЛ, ПМЕ и др.).

Устройство типа УВТЗ-1 состоит из преобразователя и выходного реле. В качестве выходного реле применяют РЗС-6, которое подает сигнал на управление магнитным пускателем.

В схеме автоматически осуществляется самоконтроль за ее работой, то есть обеспечивается гарантия отключения электродвигателя при возникновении неисправности в каком-либо элементе температурной защиты. При выходе из строя датчиков температуры или обрыве цепи их соединения с управляющим устройством последнее не позволяет включить электродвигатель в сеть.

В случае короткого замыкания в цени датчиков с управляющим устройством транзисторы будут закрыты, управляющий переход транзистора обесточен, реле отключается и своими контактами разрывает пень питания катушки магнитного пускателя.

Рис. 1. Схема электрическая принципиальная устройства встроенной температурной защиты электродвигателей УВТЗ-1

Датчики температуры устанавливают в асинхронные двигатели на заводе при их изготовлении или капитальном ремонте, а также в действующие электродвигатели во время эксплуатации. После их установки измеряют сопротивление всей цепи датчиков, которое при температуре 20 ±5° должно быть в пределах 120... 150 Ом.

Измерительный ток применяемого омметра не может превышать 50 мА. а напряжение - 2,5 В. Использовать для этих целей мегомметры не разрешается.

Измеряют сопротивление изоляции датчиков относительно обмотки и корпуса электродвигателя меггомметром на 500 В, причем величина этого сопротивления не должна превышать 0,5 МОм.

Устройство рассчитано для работы в вертикальном положении, допускает установку на стенах и конструкциях, не подверженных ударам или сильной вибрации, и не должно подвергаться постоянному нагреву, в том числе солнечному. Его можно размещать в станциях управления, сборных распределительных устройствах и отдельных шкафах.

Управляющее устройство соединяют с датчиком изолированным проводом сечением не менее 0,5 мм2 для медных проводов и 1,0 мм2 - для алюминиевых.

Проверяют работоспособность смонтированного устройства нажатием кнопки «Пуск» магнитного пускателя. При исправном электродвигателе и правильном соединении датчиков устройства и магнитного пускателя, а также при исправном их состоянии электродвигатель вращается.

Убедившись в его нормальной работе на холостом ходу, необходимо разомкнуть цепь датчиков в коробке выводов электродвигателя. Если при этом электродвигатель отключится от сети, значит, устройство встроенной защиты работает нормально. Повторно проверяют защиту путем замыкания накоротко цепи датчиков в коробке выводов. В этом случае электродвигатель также должен отключиться от сети.

Предистория вопроса. Моя недавно купленная соковыжималка чуть
не оказалась на грани гибели, из-за мякоти груши она всего лишь немного снизила обороты. Сколько я выслушал в свой адрес. Но виноват ли я? Производитель удешевляя продукцию не делает никакой защиты слабого электродвигателя изделия.

Чтобы не допустить повторения данной ситуации, нужно защитить
данный двигатель.
В качестве варианта есть 2 вида защит:
-токовая (когда в цепь включается токовый датчик и по нему контролируется протекающий ток), в критических режимах
ток возрастает;
-тепловая (контролируется температура).

Дополнительная информация

Принцип действия тепловых реле основан на тепловом действии тока, нагревающего биметаллическую пластину, состоящую из двух соединённых плоскими поверхностями металлических полосок с разными коэффициентами линейного расширения. При изменении температуры из-за различного линейного расширения частей, пластина изгибается. При нагревании до определённой температуры, пластина нажимает на защёлку расцепителя и под действием пружины происходит быстрое электрическое разъединение контактов.


Решил делать вариант с тепловой защитой.
Пошарив на Aliexpress я нашел следующие изделия:
1.термовыключатель

2.термовыключатель

3.термовыключатель

По пункту 1 , друзья из Китая прислали вместо 5А целых 10А.
Но решено было всеж испытать и это.


Нагрузив китайское изделие 17Амперной нагрузкой, мы ждали когда
наконец сработает защита, но чуть не сработал автомат защиты
лаборатории и через 20 секунд эксперимент был завершен.
После выигранного спора штучка была разобрана. Ну что сказать
2 биметалические пластины, наверно все вполне работоспособно,
нужно было только достаточное время.

Перехожу к пунктам 2 и 3.


Прозвонка мегометром на 1000v напряжении показало, что изоляция отличная больше 2000МОм.
Для проверки на сработку запасаюсь кострюлей воды. Вода закипает при нормальном давлении
при 100 градусах.Нам надо проверить 95,85 и 80.
Термовыключатели 2 работают отлично срабатываю при близких температурах и размыкаются
через 3 градуса.Вот такой гистерезис. Срабатывают тоже быстро 3с и готово.
Термовыключатель 3 надо греть дольше не менее 10 с, но тоже срабатывает при близких температурах, остывает дольше, отпускает при остывании на 3 градуса, но остывает дольше.

Доработка
Решил ставить термовыключатель 2 на 80 градусов. Наверно это лучший вариант с учетом
тепловой инерции и плоховатой теплопередачи через лак.
Ставим на статорную обмотку двигателя.
Разбираем соковыжималку и видим


чудеса китайских технологий, целый бутерброд из контактов и пластмассового термопредохранителя на 105 градусов.
Разбираем это добро


Делаем свой бутерброд, уже со своим дополнительным датчиком, обернутым в терморезину.


Пока ставлю светодиод сигнализатор о перегреве


Схема подключения

Получилось

Пока так, но в дальнейшем, после приобретения необходимого, буду делать защитное
отключение.Схема


Так можно доработать любой слабосильный электродвигатель, который может подгореть из-за
повышенной нагрузки.

Все. Выслушиваю ваши коментарии.

Планирую купить +37 Добавить в избранное Обзор понравился +35 +72