Все о тюнинге авто

Как работает опреснитель морской воды. Опреснение воды. Опреснение воды — методы

Планета Земля имеет огромные запасы воды, но основная ее часть входит в состав мирового океана и является соленой морской водой. Качество морской воды не позволяет использовать ее в чистом виде для промышленных сельскохозяйственных и тем более для пищевых целей. В составе морской воды в растворенном виде присутствует более 50 элементов системы Менделеева. Концентрация каждого элемента в отдельности крайне ничтожна, но все вместе они определяют показатель, из-за которого морскую воду называют соленой. Вода, пригодная для пищевых целей должна содержать солей не более 0,002 г/мл. Для достижения такой концентрации разработано большое количество способов, главная цель которых очистить морскую воду от солей и очистить ее. Главная задача разработчиков состоит в том, чтобы найти способ, который имел бы низкое потребление энергии и максимально полную очистку, после которой вода могла бы использоваться населением.

Способы опреснения

Сегодня существуют такие методы опреснения как дистилляция, обратный осмос, ионизация и электродиализ, которые можно использовать в промышленных масштабах.

  • Самым популярным способом является обычная или многостадийная дистилляция , при которой используется свойство закипания и парообразования при высоких температурах. Более половины опресненной воды получают именно таким способом.
  • Мембранная дистилляция , метод, при котором производится нагрев воды с одной стороны мембраны, которая пропускает только пар и образует из него пресную воду.
  • Метод обратного осмоса относительно дешевый, так как один вложенный доллар позволяет получить 16 тон пресной воды. Прилагая к морской воде давление, и продавливая ее через мельчайшие фильтры можно получить пресную воду с низким содержанием солей. Производительность мембраны и степень опреснения зависят от многих факторов: от количества содержания соли в исходном сырье, солевого состава, температуры и давления.
  • Использование электродиализа , при котором вода проходит через камеру с электродами, приводит к тому, что катионы и анионы распределяются на соответствующих электродах. Преимущество электродиализа состоит в том, что в процессе используются химически и термически стойкие мембраны, это дает возможность проводить опреснение при высоких температурах.
  • Газогидратный метод основан на способности углеродных газов при определенном давлении и температуре, создавать, с участием воды, соединения клатратного типа. Замороженную соленую воду обрабатывают гидрат образующим газом, после чего формируются кристаллы. После отделения их от рассола, кристаллы промывают и плавят, получая чистую пресную воду.

Для опреснения в южных регионах используют солнечные опреснители, в которых морская мода нагревается и испаряется. Существует и совершенно противоположный способ, при котором просто замораживают морскую воду, вернее замораживают и отделяют пресную, так как она замерзает быстрее, чем морская.

Промышленное опреснение

Недостаток в чистой питьевой воде испытывают в более чем 80 странах мира. Этот кризис спровоцирован ростом промышленного производства, ростом численности населения, ухудшением экологической обстановки во всем мире и планетарных изменений в климате. Мировое сообщество стоит на грани острого дефицита пресной воды. В такой ситуации особенно остро встает вопрос поиска альтернативных технологий по пополнению запасов пресной воды. Самым оптимальным считается путь опреснения вод мирового океана. Целесообразность этого пути ученые видят в том, что большое количество населения проживает в прибрежной зоне, имея доступ свободный к практически бесплатному ресурсу.

Опреснительные станции строят во многих странах, где ощущается недостаток в питьевой воде, например в Кувейте, Саудовской Аравии, Израиле, Объединенные Арабские эмираты, США (Калифорния). Самые мощные опреснительные установки расположены на Ближнем Востоке, например в Саудовской Аравии таких установок семь и каждая из них может производить до 400000 кубометров пресной воды в сутки. Рынок производства постоянно расширяется. Такие государства как Австралия, Испания и Алжир разрабатывают масштабные программы государственной поддержки по стимулированию промышленного производства пресной воды.

Россия в этом вопросе значительно отстает, рынок опреснительной промышленности у нас не развит. Климатическое и географическое расположение страны позволяет не стремиться в лидеры государств, вкладывающих огромные средства в опреснение воды. Но природа всегда оставляет последнее слово за собой и выносит свой вердикт. Наличие таких проблемных зон как Ставрополье, Волгоградская область, Прикаспийский регион и оренбургские степи не дает возможности забывать о дефиците пресной воды.

Альтернативные возможности

  • Антарктида дает надежду. Пока ученые ломают голову над новыми промышленными способами опреснения морской воды, другая часть светлых голов повернулась в сторону Антарктиды. Существует проекты, основывающиеся на идее транспортировки ледяных глыб с пресной водой прямо в Средиземное море. Расчеты показывают, что транспортировка льдины, размер которой равен футбольному полю, может быть осуществлен не менее чем за год, так как более высокая скорость сопровождающего каравана не возможна технически. Существуют и другие проекты, которые предусматривают измельчение реликтового айсберга и доставку его в измельченном виде в трюмах.
  • Регенерация воды. Для районов, которые расположены в большой отдаленности от морского побережья и где нет других источников пресной воды, найти альтернативные варианты довольно трудно. Здесь люди полагаются только на восстановление воды. Сбор сточных и поверхностных вод, возврат их в оборот может стать идеальным вариантом при получении воды. Этот способ используется при ирригации земель. Сбор дождевой воды, целенаправленный захват и последующее хранение в подземных хранилищах, позволяет решить проблему пусть даже в незначительной ее части.

Судовые опреснители

Для решения проблемы опреснения морской воды в мировом масштабе требуется согласие и взаимопонимание ученых, бизнесменов и политиков из разных стран. Более мелкие проблемы, такие как судовые опреснительные установки, решаются сегодня на уровне промышленных предприятий, занимающихся машиностроением. Судовые очистители-опреснители с мембранными фильтрами, это самое идеальное решения для оснащения морского судна в целях получения пресной воды в период длительного пребывания в плавании. Потребность в таких установках растет с каждым днем, и не только из-за того, что выросло количество судов, яхт и подводных лодок. Такие установки используются и в прибрежных зонах, в местности, где имеется повышенная солоноватость воды в устье реки или в озере.

Бытовые опреснители - дистилляторы

Бытовые опреснители используются для очистки и опреснения воды в бытовых условиях, в лабораториях, автосалонах, лечебных учреждениях и в косметических салонах. Бытовые дистилляторы работают по принципу круговорота воды в природе: нагревание, преобразование в пар, испарение и охлаждение. Этот метод позволяет получить мягкую и чистую воду.


Создан 15 дек 2013

Существующие разнообразные способы опреснения забортной морской воды можно разделить на две основные группы:

  • 1)опреснение без изменения агрегатного состояния жидкости (воды);
  • 2)опреснение, связанное с промежуточным переходом жидкого агрегатного состояния в твердое или газообразное (паровое).

Опреснение способами первой группы включает в себя такие виды, как химическое, электрохимическое, ультрафильтрация.

При химическом способе опреснения в воду вводят вещества, называемые реагентами, которые, взаимодействуя с находящимися в ней ионами солей, образуют нерастворимые, выпадающие в осадок вещества. Вследствие того, что морская вода содержит большое количество растворенных веществ, расход реагентов весьма значителен и составляет примерно 3-5 % количества опресненной воды. К веществам, способным образовывать нерастворимые соединения с натрием и хлором, относятся ионы серебра и бария, которые образуют выпадающие в осадок хлористое серебро и сернокислый барий. Эти реагенты дорогие, реакция осаждения с солями бария протекает медленно, соли ядовиты. Поэтому химическое опреснение используется редко.

При электрохимическом опреснении (электродиализе) применяют специальные электрохимические активные диафрагмы, состоящие из пластмассы, резины с наполнителем и анионитовых или катионитовых смол. Ванна с рассолом ограничена двумя диафрагмами: положительной и отрицательной. Под действием постоянного тока напряжением 110120 В ионы солей, растворенных в воде, устремляются к электродам. Положительные катионы через катион проницаемые диафрагмы, а анионы через анионитовую диафрагму проходят в крайние камеры, где встречаются с двумя пластинами: анодом и катодом. Встречаясь с одноименно заряженными диафрагмами, они остаются в этих камерах. В результате в промежуточных камерах оказывается обессоленная вода, которая стекает в отдельный сборник. Соли и рассолы из крайних камер отводятся за борт, а образующиеся газы (хлор и кислород) в атмосферу. Камеры, в которых опресняется вода, отделены от рассольных камер полупроницаемыми ионитовыми мембранами. При достаточном количестве пар мембран между анодом и катодом расход электроэнергии зависит от солености морской и опресненной воды: чем меньше разница между ними, тем процесс протекает экономичнее. Поэтому электродиализ целесообразно применять для опреснения слабосоленых вод при допустимом высоком солесодержании опресненной воды (5001000 мг/л). На судах, где требования к солесодержанию достаточно высокие, электродиализные опреснители не находят применения. Опытная электродиализная установка эксплуатировалась на траулере "Ногинск".

Опреснение ультрафильтрацией или так называемым способом обратного осмоса состоит в том, что солевой раствор оказывается под давлением со стороны мембраны, проницаемой для воды и непроницаемой для соли. Преснаявода проникает через мембрану в направлении, обратном обычному осмотическому (когда пресная вода вследствие осмотического давления проникает через мембрану в солевой раствор). В существующих установках производительностью около 4 м3/сут соленая вода под давлением около 150 кгс/см2 продавливается через мембраны ацетилцеллюлозного типа, обработанные перхлоратом магния для увеличения их водопроницаемости. С противоположной давлению стороны мембран установлены пористые бронзовые плиты, способные выдержать большое давление. При испытаниях установки с 1,5 %ным солевым раствором была получена вода с солесодержанием 6001000 мг/л Сl. Применение ультрафильтрации как способа опреснения ограничивается малым сроком службы пленок-мембран и большими размерами фильтрующей поверхности. К методам опреснения второй группы, относятся вымораживание и дистилляция, или термическое опреснение.

Опреснение вымораживанием основано на том, что в естественных природных условиях лед, образующийся в океанах и морях, является пресным. При искусственном медленном замораживании соленой морской воды вокруг ядер кристаллизации образуется пресный лед игольчатой структуры с вертикальным расположением игл льда. При этом в межигольчатых каналах концентрация раствора, а, следовательно, и его плотность, повышаются, и он, как более тяжелый, по мере вымораживания оседает вниз. При растаивании игольчатого льда образуется пресная вода с содержанием солей 5001000 мг/л Сl. При быстром замораживании рассол оказывается включенным в толщу льда, и сильное и интенсивное охлаждение приводит к замерзанию всей массы соленого раствора в единое ледяное тело. Для лучшего опреснения морского льда иногда применяется искусственное плавление его части при температуре ~20°С. Вода, образующаяся при таянии, способствует более полному вымыванию солей из льда. Способ вымораживания достаточно прост и экономичен, но требует сложного и громоздкого оборудования.

Дистилляция, или термическое опреснениенаиболее распространенный на морских судах способ получения пресной воды из забортной морской. Как известно, морская вода представляет собой раствор, состоящий из водылетучего растворителя и солейнелетучего растворенного в воде твердого вещества. Сущность дистилляции заключается в том, что забортную воду нагревают до кипения и выходящий пар собирают и конденсируют. Образуется пресная вода, называемая дистиллятом. Выпаривать воду можно как при кипении, так и без кипения. В последнем случае морскую воду нагревают при более высоком давлении, чем давление в камере испарения, куда направляется вода. Так как при этом температура воды превышает температуру насыщения, соответствующую давлению в камере испарения, то часть поступившей воды превращается в пар, который и конденсируется в дистиллят. Для парообразования используется теплота, содержащаяся в самой испаряемой воде, которая при этом охлаждается до температуры насыщения оставшегося рассола. Основное термодинамическое различие между процессами заключается в следующем: при кипящем процессе теплота подводится от внешнего источника и поддерживает температуру насыщения при данном постоянном давлении в испарителе, т. е. процесс является изотермическим; при некипящем процессе теплота подводится к морской воде без кипения до температуры выше температуры насыщения, соответствующей давлению в испарителе, и, следовательно, процесс испарения идет за счет внутренней теплоты и является адиабатным. Недостатком термического опреснения избыточного давления является его малая экономичность: на получение 1 кг дистиллята расходовалось до 700 ккал, что соответствует выходу 1012 т дистиллята на 1 т расходуемого топлива. Этот недостаток удалось преодолеть применением вакуумных испарителей с использованием утилизационной теплоты двигателей внутреннего сгорания и парогенераторов. Дистилляция, как уже было отмечено, основной способ опреснения морской воды, применяемый на судах торгового флота, и поэтому в дальнейшем будут рассмотрены только опреснительные установки, работающие на термическом опреснении.

В настоящее время исследуются новые способы водоопреснения, в частности путем образования кристаллогидратов и при помощи гидрофобного теплоносителя. Принцип кристаллогидратов заключается в выделении пресной воды из соленых растворов в форме кристаллов, которые в специальном расплавит еле разлагаются на чистую воду и гидрат-агент. В качестве гидрат-агентов для повторного использования в процессе используются такие вещества, как метилбромидгидраты, метилхлоридгидраты, гидраты изо-бутана. Сущность гидрофобного теплоносителя заключается в том, что различные смеси углеводородов, парафины, фторированные масла и другие вещества, инертные по отношению к воде и растворенным в ней солям, впрыскивают в теплонесущий дистиллят для нагрева. После этого дистиллят и теплоноситель разделяют и последний впрыскивают в морскую воду. При нагреве часть воды испаряется и образующийся пар в конденсаторе превращается в дистиллят. Гидрофобный теплоноситель отделяют от оставшегося после выпаривания рассола и возвращают в теплонесущий дистиллят для последующего нагрева.

Схемы опреснительных установок поверхностного и бесповерхностного типов изображены на рис. 1. В испарителе 1 поверхностного типа (рис. 1, а) находится греющая батарея 2, через которую проходит теплоносительпар или горячая вода.

Рис.1

а поверхностной (кипящей); бес поверхностной (адиабатной).

В результате нагрева и кипячения рассола в испарителе выделяется из морской воды так называемый вторичный пар, который направляется по трубопроводу в конденсатор 9. Пар охлаждается забортной водой, прокачиваемой по змеевику циркуляционным насосом 8, конденсируется и дистиллят откачивается дистиллятным насосом 7. Часть забортной воды, выходящей в подогретом состоянии из конденсатора, отводится через регулятор уровня 6 в испаритель. Для поддержания постоянной солености рассола в испарителе производится продувание рассольным насосом 4.

В установке с бесповерхностным испарителем 1 (рис. 1, б) отсутствуют греющие элементы с твердой поверхностью для теплопередачи. Морская вода перед поступлением в испаритель предварительно нагревается в подогревателе 3 теплоносителем до температуры, которая превышает температуру насыщения, соответствующую давлению, поддерживаемому в испарителе. При поступлении воды из подогревателя, где вода не кипит, так как давление в нем более высокое, в испаритель с более низким давлением происходит самоиспарение некоторой части воды за счет внутренней теплоты. Образовавшийся пар, как и в предыдущей схеме, поступает в конденсатор 9, прокачиваемый забортной водой от насоса 8, конденсируется и откачивается дистиллятным насосом 7. Часть прокачиваемой охлаждающей воды отводится для питания испарителя через регулятор уровня 6. Неиспарившаяся вода из испарителя циркуляционным рассольным насосом 5 многократно прокачивается через подогреватель 3 и вновь поступает на испарение, при этом часть рассола выдувается за борт через клапан. Преимущество бесповерхностных испарителей заключается в том, что вследствие отсутствия поверхности нагрева в них не образуется накипь, но они требуют установки насосов большей производительности.

Кроме рассмотренного основного признака способа испарения дистилляционные опреснительные установки можно классифицировать по ряду других признаков:

по назначению: опреснительные для получения питьевой воды; испарительные для получения котловой воды; комбинированные для получения питьевой, мытьевой и питательной воды;

  • -по роду теплоносителя: паровые, водяные, газовые, электрические;
  • -по давлению в испарителе: избыточного давления; вакуумные;
  • -по способу регенерации теплоты: компрессионные, в которых вторичный пар сжимается и используется в качестве греющего; ступенчатые, в которых пар, получаемый в предыдущих испарителях, используется в качестве греющего пара в последующих;
  • -по связи с судовой энергетической установкой: автономные, не связанные с работой СЭУ; неавтономные, включаемые в цикл работы главных и вспомогательных дизелей и парогенераторов. К ним относятся распространенные на промысловых судах утилизационные опреснительные установки, использующие теплоту водяной системы охлаждения главных двигателей.

Конструкция испарителя поверхностного типа (рис.2) вакуумной опреснительной установки СРТ с использованием в качестве теплоносителя отработавших газов от главного дизеля показана на рис. 2. Испаритель состоит из цилиндрического вертикального корпуса 4 с размещенными внутри двумя трубными решетками 5 и 9, к которым приварены трубки 8, расположенные в шахматном порядке. В межтрубном пространстве имеются две направляющие перегородки 7.

Отработавшие газы главного двигателя входят через патрубок 14 в межтрубное пространство, совершают два поворота, через стенки трубок передают теплоту на испарение рассола и уходят через патрубок 6 в атмосферу. В нижней крышке 13 расположены входной 12 и выходной 11 патрубки для морской воды и рассола, а также закрытый патрубок 10 с цинковым протектором для предохранения испарителя от коррозии. В верхней крышке имеются сепараторы пара: конусный 3 и сетчатый 2 с кольцами Рашига 1. Уравнительная трубка поплавкового регулятора уровня присоединена к патрубку 15. Производительность испарителя равна 500 кг/ч.

Необходимое количество фильтрующих элементов:

  • фильтры для удаления взвешенных твердых частиц:
    • установки 2,4 м³/ч - 1 штука
    • установки 8,10 м³/ч - 1-2 штуки
  • фильтр с активированным углем:
    • установки 2,4,8 м³/ч - 1-2 штуки
    • установки 10 м³/ч - 3 штуки
    Фильтры необходимо менять раз в месяц
  • мембраны обратного осмоса:
    • установки 2 м³/ч - 1 штука
    • установки 4,8,10 м³/ч - 2 штуки

Коэффициент восстановления (отношение количества получаемого фильтрата к исходному количеству воды)

  • установки 2,4,8 м³/ч - 45%
  • установки 10 м³/ч - 35%

Чертеж установок обессоливания 2-10 м³/день


Схема установки обессоливания производительностью 10 м³/день:


Установка опреснения морской воды в 20-футовом контейнере арктического исполнения производительностью 40 м3 в сутки

Возможен к поставке широкий спектр опреснительных установок в контейнерном исполнении или смонтированных на полозковом шасси. Системы контейнерного исполнения построены внутри металлических отгрузочных контейнеров, собраны и полностью испытаны перед поставкой без необходимости сборки системы на площадке, прокладки трубопроводов, электропроводки или монтажа компонентов. Контейнер также служит отгрузочным контейнером, поэтому нет необходимости в деревянной упаковке или аренде морских контейнеров для транспортировки системы к месту назначения.

Полная система включает в себя фильтрацию, насосное оборудование, мембраны, электрические средства управления, подачу реагентов и элементы управления. Установки в контейнерном исполнении предназначены для производства до 1000 м3 в сутки питьевой воды из морской воды.

Контейнеры спроектированы для стационарных или мобильных установок внутри или вне помещений.

Характеристики:

Характеристики опресненной воды (фильтрата) на выходе из опреснительной установки:

  • Соленость: ниже 400 ppm
  • Концентрация хлоридов: ниже 100 ppm
  • Содержание взвешенных частиц: ниже 5 ppm

Морская вода на мембраны должна подаваться при минимальной температуре 5 ° C. В опреснителе предусмотрен паро-водяной пластинчатый теплообменник с пластинами из титанового сплава для подогрева морской воды паром в зимнее время. Потребление пара с температурой 170°С при давлении 8 атм – около 200 кг в час.

Установка проектировалась для работы в невзрывоопасной зоне.

Расчетная потребляемая электроэнергия при работе системы обратного осмоса составляет 5 кВтч на один м3 опресненной воды.

Процесс предусматривает следующие этапы очистки

  • Предварительная обработка подаваемой воды
  • Одинарная ступень системы обратного осмоса
  • Последующая обработка фильтрата

Предварительная обработка

Морская вода перекачивается центробежным насосом, имеющим следующие характеристики:

  • Тип: центробежный
  • Материал: нержавеющая сталь для деталей, контактирующих с жидкостью.
  • Расход: 3,71 м3 / час
  • Напор: 30 м при 3,71 м3 / ч
  • Всасывание: заполненный
  • Двигатель: 1,5 кВт, 2 полюса

Тип: вертикальный

Материал: FRP

Расчетное давление: 4 бар

Диаметр: 1050 мм

Высота: 2100 мм

Фильтруемая среда: песок и пирулозит

Мультисредный фильтр оснащен пневматическими клапанами включения / выключения для работы и обратной промывки.

На входе фильтра удаления железа и марганца установлен магнитный датчик.

Обратная промывка будет выполняться сырой водой через специальный насос обратной промывки. Во время обратной промывки будет произведен останов установки.

Насос обратной промывки будет иметь следующие характеристики:

  • Тип: центробежный
  • Материал: нержавеющая сталь для деталей, контактирующих с жидкостью
  • Расход: 21 м3 / час
  • Напор: 15 м при 21 м3 / ч
  • Всасывание: заполненный
  • Двигатель: 1,5 кВт, 2 полюса

После фильтра удаления железа и марганца происходит 100% фильтрация воды с помощью одно-картриджного фильтра первой ступени со следующими характеристиками:

  • Материал корпуса фильтра: ПП
  • Степень фильтрации: 20-5 микрон

Коллектор картриджного фильтра оснащен манометрами и датчиками давления. Затем морскую воду дезинфицируют с помощью ультрафиолетового стерилизатора с корпусом из полиэтилена повышенной плотности, местной панелью управления (срок службы ламп>8000 рабочих часов).

В отфильтрованную и дезинфицированную воду затем добавляется противонакипное средство.

Система дозирования противонакипного средства включает:

  • 1 Электромагнитный дозирующий насос
  • 1 Датчик низкого уровня для подачи общего сигнала, когда реагенты почти заканчиваются
  • 1 Датчик низкого уровня для защиты дозирующего насоса от работы всухую

После добавления противонакипного средства происходит 100% фильтрация воды одно- картриджным фильтром второй ступени со следующими характеристиками:

  • Материал корпуса фильтра: ПП
  • Расчетное давление: 6 бар изб.
  • Степень фильтрации: 10-1 микрон
  • Количество картриджей: 1 (высота 20“)

Коллектор картриджного фильтра оснащен манометрами.

После картриджных фильтров предусмотрен бактериальный ингибитор.

Система дозирования бактериального ингибитора (бисульфит натрия) включает:

  • Дозирующий резервуар из полиэтилена повышенной плотности емкостью 50 л
  • электромагнитный дозирующий насос
  • переключатель низкого уровня для защиты дозирующего насоса от работы всухую

Система обратного осмоса

Вода, отфильтрованная картриджными фильтрами, готова к подаче в систему обратного осмоса.

Характеристики обратного осмоса следующие:

Кол-во сосудов, работающих под давлением: 5 (в каждом по 3 элемента)

Тип сосудов, работающих под давлением: стекловолокно, расчетное давление 7 атм, боковое отверстие.

Диаметр сосудов: 4 ”

Кол-во мембран: 15

Восстановление: 45%

Расход: 3,71 м3 / час

Расход фильтрата: 1,67 м3 / час

Давление подачи: 62,5 бар при 5 ° C

Соленость фильтрата: около 220 ppm при 5 ° C

H.P. установленная мощность: 11 кВт

H.P. потребляемая мощность: прибл. 7,7 кВт при температуре морской воды 5 ° C

Насос высокого давления имеет следующие характеристики:

  • Тип: аксиально-поршневой
  • Материал: дуплексная нержавеющая сталь / супердуплексная нержавеющая сталь для всех частей, находящихся в контакте со средой

Насос высокого давления будет управляться электроприводом с частотной регулировкой (ЧРП) со степенью защиты IP55.

Последующая обработка

Предусматривается последующая обработка фильтрата с помощью системы дозирования каустической соды для нейтрализации свободного CO2 и затем регулировки pH.

Система дозирования каустической соды включает:

  • Дозирующий резервуар из полиэтилена повышенной плотности емкостью 50 л
  • 1 электромагнитный дозирующий насос
  • 1 переключатель низкого уровня для защиты дозирующего насоса от работы всухую
  • 1 измеритель рН

Система промывки и очистки

Для мембран потребуется периодическая очистка. Для этого предусмотрена система очистки мембран.

Система очистки мембран состоит из:

Промывочный / очистительный бак имеет следующие характеристики:

  • Тип: Вертикальный
  • Материалы: Полиэтилен повышенной плотности
  • Вместимость: 300 л

Насос для очистки / промывки имеет следующие характеристики:

  • Тип: центробежный, горизонтальный
  • Материалы: AISI 316 (для всех частей, контактирующих с жидкостью)
  • Мощность двигателя: 1,5 кВт (без потребления энергии, когда установка находится в производстве)

Когда предусмотрен останов установки обратного осмоса на долгое время, требуется промывка системы. Промывка будет автоматической и будет выполнена с использованием фильтрата низкой солености.

Процедура очистки должна начинаться оператором.

Установки обессоливания воды производительностью 40 и 160 м³/день

  • фильтр для удаления взвешенных твердых частиц - 1 шт.

  • мембраны обратного осмоса:
    • установки 40 м³/ч - 2 штуки.
    • установки 160 м³/ч - 8 штук (2 сосуда по 4 мембраны в каждом).

Мембраны необходимо менять примерно каждые 3 года

Коэффициент восстановления - 38%

Схема установки обессоливания производительностью 40 м³/день:


Схема установки обессоливания производительностью 160 м³/день:


Система обратного осмоса производительностью 300 м³/день

Необходимое количество фильтров:

  • фильтр для удаления взвешенных твердых частиц - 3 шт.
    Фильтр необходимо менять раз в месяц.
  • фильтр для удаления остаточного хлора в воде - 3 шт.
    Фильтры необходимо менять раз в месяц.
  • мембраны обратного осмоса - 24 штуки (4 сосуда по 6 мембран в каждом).
    Мембраны необходимо менять примерно каждые 3 года

Коэффициент восстановления - 50%


Система опреснения воды, производительностью 500 м³/сутки

1. Описание процесса

Морская вода будет закачиваться напрямую в 50 м³ резервуар (не вкл. в объем поставки), затем бустерным насосом подаваться в многослойный очищающий фильтр в фильтр с активированным углём, а затем в секцию защитной микрофильтрации и в секцию осмоса. В установке также имеется станция химической очистки, необходимая для фильтрации промывочной воды при проведении процесса обратного осмоса.

Фильтрат (конечный продукт) должен храниться в резервуаре 500 м³ (не вкл. в поставку) и затем направляться на использование насосом (не вкл. в поставку). Концентрат будет подаваться на слив самотеком.

Система предварительной очистки смонтирована в стандартном 40" контейнере (вкл. в объем поставки) для морской перевозки. Секции защитной микрофильтрации и обратного осмоса смонтированы в другом 40" контейнере (вкл. в объем поставки) для морской перевозки.

2. Система предварительной очистки

Дозирующая система хлоринации

Электронный пропорциональный дозирующий насос с датчиком уровня и расходомером с импульсным датчиком для дозирования хлора подходит для систем с разной подачей. Корпус находится на резервуаре.

В поставку входит:

  • мембранный дозирующий насос
  • панель управления
  • трубы всаса и нагнетания
  • фитинг инжекторной трубы
  • нижний фильтр
  • датчик уровня
  • контрольная лампа для минимального уровня продукта
  • резервуар для хранения продукта из полиэтилена

Мембранный насос

Резервуар в качестве контейнера раствора

Материал - полиэтилен, объем 500 л

Подающая насосная система обратного осмоса

Горизонтальный центробежный насос смонтирован на раме в комплекте с панелью управления

Двухступенчатый фильтр

Многослойный очищающий фильтр для удаления взвешенных твердых частиц, присутствующих в воде. Все материалы, контактирующие с водой, пригодны для питьевой воды.

Количество
Установка
2
параллельно
Параметры одного фильтра:
Диаметр 1400 мм
Высота 2000 мм
Производительность 26,5 м³/ч
Тип промывки вода
Фильтровальный материал кварцевый песок различного гранулометрического состава
Тип наполнения многослойный
1й слой кварцевый песок 3-5 мм
2й слой кварцевый песок 1,5 мм
3й слой кварцевый песок 1-0,6 мм
Материал резервуара полиамид
Давление системы 10 бар
Давление гидравлических испытаний 15 бар
Трубы ПВХ PN 16
Тип клапанов DN 90

Передняя панель и запчасти:

  • трубами и фитингами

Фильтры с активированным углем

Многослойный фильтр дехлорирования для удаления остаточного хлора в воде.

Все материалы, контактирующие с водой, пригодны для питьевой воды.

Передняя панель и запчасти:

Фильтр оборудован панелью управления на передней части для распределения потока при работе и разными ступенями промывки и оснащен:

  • трубами и фитингами
  • датчиками давления для определения потерь давлений, держателями датчиков и элементами отбора проб.

3. Установка обратного осмоса

Антискалантная система дозирования

Антискалантный дозирующий насос с резервуаром 250 л в сборе со ступенчатым поплавковым реле на всасе, линией нагнетания и дозирующей форсункой.

Система автоматически дозирует продукт поточным образом и состоит из:

  • резервуара 250 л в качестве контейнера для раствора - 1 шт
  • электронного мембранного дозирующего насоса - 1 шт

Производительность 10 л/ч при давлении 10 бар

Защитная микронная система фильтрации, установленная на входе в отсек осмоса

Система оснащена датчиками давления из нерж. стали на входе и на выходе для контроля наполнения глицерином, патрубками дренажа и сапуна для снижения давления перед заменой фильтрующих элементов и мелкими запчастями для исправной работы.

Необработанная вода

Конечная вода (фильтрат)

Концентрат

Рабочее давление

Восстановление

Мембраны

Сосуды

Станция химической очистки

Установлена на отдельной раме, включает следующие основные компоненты:

Автоматическая система промывки

Система используется для автоматического наполнения резервуара (с целью промывки) и промывки мембран фильтратом при каждом закрытии. Это предохраняет мембраны от чрезмерных солевых остатков. Время и период флюсования устанавливаются во время пуска системы.

Трубопровод высокого и низкого давления

Основной насос высокого давления для создания высокого давления в мембранах

Измерители расхода

3 шт. магнитных турбинных системы с визуализацией на дисплее

Электрическая панель управления с микропроцессором с цифровым дисплеем

4.1.1 Система дозирующего хлорирования:

Системы опреснения воды производительностью 2000 м³/сутки

Система опреснения воды для получения 2000 м³/сутки чистой питьевой воды высокого качества при непрерывном режиме работы 24 часа в сутки

Технические характеристики установки

Производительность 2000 м³/сутки или 83 м³/час пресной воды
Коэффициент извлечения
Расход подачи
45 %
185 м³/час
Напряжение
Максимальное давление для обратного осмоса
380В/3/50Гц
5 бар
Минимальное давление для обратного осмоса
Рабочее давление
3 бар
62 бар
Максимальное рабочее давление
Расчетная температура
70 бар
18°C
Минимальная температура морской воды 2°C
Максимальная температура морской воды 40°C
Расчетная соленость морской воды 35000 ppm
Количество мембран 144 шт.
Количество корпусов для мембран 18 шт. для 8 мембран
Максимальная фильтрация до 5 мкм (опционально до 1 мкм)

Габаритные размеры и веса

Энергопотребление

Необходимые условия по подаче морской воды к установке

Техническое описание и состав

Установка состоит из двух 40 футовых морских контейнеров.

В состав обоих контейнеров входят:

  • Стены из гофрированной стали, деревянные полы на стальных перекладинах;
  • Контейнер является прочным и универсальным средством перемещения установки. Гофрированный лист изготовлен из коррозионностойкой стали по стандарту ISO;
  • Двойные двери в торце контейнера позволяют осуществлять надежное запирание и защиту установки от посторонних лиц.
  • Габариты контейнера ДхШхВ - 12200х2500х2900 мм
  • Толщина полов - 28 мм

Контейнер №1. Предварительная фильтрация

Автоматический осветлительный вертикальный фильтр

  • Служит для удаления крупных частиц песка, около 50 микрон, которые являются основными загрязнителями морской воды. Фильтрация служит для предотвращения быстрого засорения микрометрических фильтров;
  • В состав установки входят: семь параллельных фильтров, 6 из которых в работе и 1 в режиме ожидания (отмывание).
    Процесс фильтрации заключается в подаче морской воды в количестве 185 м³/ч при давлении 4 бара. Скорость прохождения воды при этом составляет 30 м/ч. Время контакта воды с фильтром 2 мин.
  • Размер корпуса фильтра: Диаметр 1095мм, высота 2100мм.
  • Загрузка фильтра состоит из: щебня, тяжелого песка, мелкого песка, антрацита, а также различных видов силикатного песка. Последний слой из антрацита для снижения содержание органического веществ;
  • Рабочее давление - 6 бар
  • Температурный диапазон - от 1 до 43 °C
  • Напряжение питания - 230В/50 Гц
  • Рабочее напряжение составляет 12В переменного тока
  • Корпус фильтра, изготовлен из полиамида 6 (не армированный стекловолокном пластик)

Специальные свойства полиамида:

  • Автоматическая система промывки состоит из клапана контроля, который включает в себя электрический регулятор для обоих циклов: нормального цикла (обычный режим фильтра) и цикла обратной промывки.

Фильтр 25 мкм

  • Центробежные фильтры для предварительной фильтрации, оснащенные нижним сливным клапаном для очистки. Это первый фильтр на входе в установку, который позволяет чистить воду от загрязнений размером более чем 25 микрон;
  • В состав фильтров входит: Два соединённых параллельно корпуса, каждый фильтр будет обеспечивать расход 92 м³/ч. Входные и выходные фитинги каждого фильтра имеют размер DN80;
  • Материал фильтрующего элемента изготовлен из высококачественного синтетического материала, который прекрасно подходят для пищевых продуктов и питьевой воды.
  • Установленные в корпусе лопасти преобразуют поток жидкости в центробежный, при этом частицы крупнее 25 мкм отбрасываются в нижнюю чашу фильтра.
  • Преимущества:
    • Высокая и постоянная скорость потока с низким перепадом давления;
    • Центробежная предварительная фильтрация с циклональным эффектом;
    • Легкость и быстрота обслуживания и очистки;
    • Возможность постоянного визуального контроля фильтра;

Кассетные фильтры 5 мкм

Конструкция фильтра рассчитана на давление 6 бар. Фильтры изготовлены из ПВХ, в том числе внутренние части, за исключением пружин, которые изготовлены из металла.

Режим работы: 2 фильтра работают параллельно, расход по 100 м³/ч через фильтр

Система дозирования антискаланта

  • Оборудование для дозирования состоит из мембранного дозирующего насоса, бутылки для антискаланта и 1000 литровой полиэтиленовой емкости-мешалки для смешивания воды и химического вещества;
  • Дозирование должно осуществляться постоянно в поступающую воду. Это продукт одобрен для производства воды и потребления человеком. Он имеет нулевое влияние на уровень общего органического углерода.

Бак для морской воды после фильтрации

  • Бак установлен на верхней части контейнера

Насос для промывки фильтров

  • Горизонтальные, многоступенчатые, не самовсасывающие, центробежные насосы с осевым всасыванием и радиальным нагнетанием, не требующие смазки.
  • Компактное устройство имеет механическое уплотнение вала
  • Насос и двигатель смонтированы на общей опорной раме и все контактирующие с перекачиваемой жидкостью части насоса выполнены из нержавеющей стали 316.

Характеристики:

Контейнер №2. Блок обратного осмоса

В корпусе контейнера выведены следующие патрубки:

Система высокого давления (3 параллельно соединенных насоса)

  • В установке будет смонтировано три идентичных насоса высокого давления соединенных параллельно, производительностью 30 м³/ч и давлением 65 бар каждый;
  • Насосы выбраны осевого поршневого типа, которые обеспечивают очень легкую и компактную конструкцию
  • Насос имеет встроенный клапан промывки, что позволяет соленой воде проходить через насос, когда насос не работает;
  • Все части насосов обеспечивают долгой службы при постоянно высокой эффективности и минимальном обслуживании.
  • Электрический двигатель: 1500 об/мин, мощностью 75кВт.

Бак для воды и промывка мембран

  • Бак из стеклопластика объемом 6 м³, установленный на верхней части контейнера.
  • Бак покрыт специальным составом, который обеспечивает устойчивость к воздействию химических и погодной коррозии.
  • Промывка чистой водой предназначена для удаления биологических загрязнений, которые могут образоваться на мембране в состоянии застоя. Ежедневный запуск системы поможет предотвратить этот рост. Промывка пресной водой может быть полезна, когда опреснитель работает в течение коротких промежутков времени. Промывка может быть исключена, если опреснитель работает длительные промежутки времени. Важно отметить, что промывка пресной водой не заменяет бактерицидной обработки. Бактерицидная обработка является лучшим способом предотвращения роста бактерий.
  • Мембраны автоматически промываются пресной водой каждый раз, когда опреснитель останавливается, что позволяет производить полную очистку мембран и, следовательно, обеспечить постоянную более высокую производительность и значительную экономию на эксплуатационных расходах.
  • Время промывки может продолжаться в течение короткого периода, менее чем 5 минут. Это гарантирует, что все соли отложенные на поверхности мембран будут смыты пресной воды, а затем удалены.

Насос для промывки мембран

  • Вертикальный, многоступенчатый, не самовсасывающий, центробежный насос для установки в трубопроводных системах на фундаменте, не требующий смазки;
  • Компактное устройство имеет механическое уплотнение вала;
  • Материальное исполнение: все части соприкасающиеся со средой изготовлены из нержавеющей стали 316 (корпус, рабочие колеса, диффузор и вал).

Характеристики:

Энергосберегающее устройство (ЭУ)

  • ЭУ состоит из изобарического обменника, поршневого насоса высокого давления и электрического двигателя.
  • Все части включены в ЭУ предназначены для обеспечения длительного срока службы с постоянной высокой эффективностью и минимальным обслуживанием.
  • Это один из самых компактных и легких устройств рекуперации энергии на рынке.
  • Отсутствие дорогих высокого давления механического уплотнения.
  • Все части устройства изготовлены из высококачественных коррозионно-стойких материалов, например супер-дуплекс.

Мембраны обратного осмоса

  • Полиамидные мембраны состоят из тонкой пленки со спиральным плетением. Это новейшая технология на данный момент. Спиральные мембраны с винтовой внешней оберткой из стекловолокна.
  • Высокая степень опреснения для солоноватых вод. Эффективность извлечения соли минимум 98,6%.
  • Мембраны рассчитаны на продолжительный срок службы

Корпуса для мембран

  • Корпуса изготовлены с использованием эпоксидной смолы и укреплены стекловолокном, так как это сочетание дает лучшие механические условия.
  • Нет металлических вставок внутри корпуса, которые в суровых условиях морской воды могут быть подвержены коррозии.
  • Уникальная Заглушка - упорное кольцо является частью Заглушка и установлены с обеих сторон, поддерживает мембраны плотно все время и снижает риск порчи уплотнительного кольца.

Устройство измерения электропроводности пресной воды

  • Устройство установлено на панели управления, а их зонды будут установлены в трубах морской воды и пресной воды, для контроля качества добываемой воды на выходе из оборудования.
  • Устройство имеет множество точек, для управления двумя реле: Одно мгновенное реле и другое реле задержки (с программированием времени задержки). Реле задержки может быть использовано в качестве сигнального реле; сигнализация может быть активирована нажатием кнопки установки.

Цифровой расходомер

  • Корпус датчика:
  • Высокая химическая стойкость
  • Сигнализация при отсутствии воды в трубах.
  • Диапазон выше 50:1.
  • Выходной сигнал 4-20 мА.
  • Дисплей:
  • Отсутствие внешнего источника питания.
  • Долговечные 3,6В литиевые батареи.
  • Два канала: для мгновенной скорости потока и общей скорости.
  • Нет потери информации, когда батарея будет заменена.

Хлор и рH кондиционирование пресной воды

  • Хлор необходим, чтобы сделать воду питьевой. Станция автоматического управления имеет полную регулировку и измерение рН, свободного хлора и температуры. Полное автоматическое управление и само-регулировку.
  • рН должен быть увеличен, чтобы соответствовать требуемому значению 7,5-8. Повышение рН имеет следующие преимущества:
  • Уменьшает эффект от коррозии и ржавчины на нержавеющих трубах.
  • Увеличивает остаточную жесткость пресной воды.
  • Делает возможным право кондиционирования рН.
  • Делает обратный осмос получаемой воды лучше в конце процесса.

Система химической очистки мембран обратного осмоса

Система предназначена для продления жизни мембранам.

Система включает в себя:

  • Технологический насос из нержавеющей стали, центробежного типа, для подачи химического раствора.
  • 20 мкм кассетный фильтр и 1000 литровый бак пресной воды;
  • гибкие шланги.

Состав контейнеров

Объем поставки:

  • Система предварительной фильтрации в сборе (контейнер №1);
  • Система обратного осмоса в сборе (контейнер №2).

Мобильная система опреснения морской воды производительностью 2000 м³/день, размещенная в двух контейнерах

Исходные данные

Общее кол-во растворенных частиц: 35000 мг/л
Мутность воды: до 20 НЕФ
Масло и смазка: до 1.5 мг/л
Температуры окр. среды: от 5°C до 40°C, преобладающая температура 18°C
Требуемое количество и качество воды: 2000 м³/день с учетом всех параметров для использования питьевой воды.
Мы предлагаем систему обработки, состоящую из 2-х модулей, которая будет работать параллельно на базе конфигурации 2x50% и периферийном оборудовании, а именно:

  • реминерализация за счет впрыскивания раствора бикарбоната натрия и хлорида кальция.
  • последующее хлорирование за счет впрыскивания гипохлорита натрия.

Комплексная установка монтирована в 40 футовом контейнере в комплекте с контролем температуры. Открывает возможности для быстрого процесса установки и простой эксплуатации. Предлагает решение для обессоливания морской воды при низком потреблении энергии и реагентов.

Обзор системы

Мобильная установка спроектирована для работы при широком диапазоне параметров по морской воде:

  • Мутность до 20 НЕФ
  • Общее кол-во растворенных частиц до 42,000 ppm
  • Температура воды: от 5°C до 40°C.
  • Масла и жиры: до 1.5 ppm

Для того, чтобы получить обессоливание с параметрами выше данного диапазона требуется дополнительная предварительная обработка.

Предлагаемая нами установка включает в себя новейшую технологию по обработке воды, которая характеризуется высокой производительностью при минимальной стоимости. Имеет следующие особенности:

  • Система предварительной обработки с дисковым фильтром (DF) с ультрафильтрационными (UF) мембранами обеспечивает бесперебойную постоянную работу, при качестве неочищенной воды до 20 НЕФ.
  • Соляной раствор обратного осмоса для промывки UF мембранами повышает улавливание и минимизирует промывочное оборудование.
  • Мембраны обратного осмоса с большой интенсивностью потока и низким энергопотреблением последнего поколения - Обеспечивают снижение рабочего давления и тем самым экономят энергопотребление.
  • Прямая подачи от ультрафильтрации до обратного осмоса (RO) - Исключает необходимость использования промежуточного бака, картриджного фильтра и насоса низкого давления, экономит эксплуатационные расходы и площадь.
  • Высокопроизводительный поршневой насос высокого давления и технологичное устройство регенерации энергии (ERD) - Экономит до 60% расходов на электроэнергию по сравнению с установками без какого-либо ERD.
  • Низкое потребление хим. регентов - Благодаря использованию эффекта биоцидов от перепада осмотического давления в обратной промывке (BW) и химически повышенной обратной промывке (CEB) ультрафильтрации.
  • Вариативность работы - Все насосы оснащены частотно-регулируемым приводом (VFD), что дает широкий рабочий диапазон.
  • Полностью автоматическая система с высокой эксплуатационной готовностью и низким ТО - до 99% готовности.

Качество воды до очистки

Предполагается что исходная вода - это типичная морская вода с общим количеством растворенных частиц (TDS) 35,000 ppm. Мы рассматриваем технические характеристики морской воды с 36,000 ppm TDS, только в случае, если есть небольшое варьирование основных параметров морской воды.

Качество обработанной воды

Обессоленная вода будет иметь менее чем TDS 375 мг/л даже при самой неблагоприятной температуре (40°C) для работающей системы при 50% улавливания.

Для работы при стандартной температуре от 09°C до 24°C для оборудования будет использоваться комбинация мембран. Для работы при более низких или более высоких температурах для оборудования следует использовать только определенные мембраны или комбинации мембран. После обработки реминерализация при всех температурах полученная вода будет иметь: TDS около 400 ppm, общая жесткость примерно 65 ppm и щелочность примерно до 60 ppm.

Техническое описание

Стадии обработки

Установка очистки морской воды включает в себя следующие системы для осуществления всех стадий процесса:


  • Система с дисковым фильтром - Для удержания взвешенных частиц до 130 микрон.
  • Система ультрафильтрации (UF) - Для полного удержания взвешенных частиц, обеспечивается мутность 0,2 НЕФ и индекс плотности осадка менее чем 2,5, что дает эффективную защиту для мембран обратного осмоса.
  • Система ультрафильтрации обратной промывки - Промывка осуществляется при использовании соляного раствора для обратного осмоса. Применение этой технологии повышает общий показатель улавливания системы и экономит энергозатраты.
  • Элементы UF работают при использовании фильтрата обратного осмоса, такая технология дает достаточное сокращение используемых химических реагентов (NaOCl и HCl). Химическая очистка проходит автоматически один раз в 24 ч с целью предотвращения нежелательного биологического загрязнения на мембранах UF.
  • Система дозирования антиоксиданта: Для предотвращения окисления мембран обратного осмоса.
  • Система дозирования со шкалой для ингибитора: Для предотвращения накопления соли (окалины) в мембранах обратного осмоса.
  • Дозирующая система высокого давления - Насос высокого давления для мембран обратного осмоса работает в комбинированной системе, состоящей из поршневого насоса и устройства регенерации энергии с теплообменником изобарического давления, соединенным с бустерным насосом.
  • Система обратного осмоса - Состоит из ёмкостей давления и мембран для интенсивного потока / ультра низкого давления.
  • СИП - Промывка осуществляется автоматически, каждый раз система обратного осмоса останавливается на более чем 15 мин.
    Мембраны обратного осмоса (RO) и ультрафильтрации (UF) для СИП должны заменяться дважды в год при нормальной эксплуатации.
  • Система придания воде питьевых качеств - Как указано выше, обессоленная вода используется для питья, мобильная установка может быть оснащен опционально дозированием Na 2 Co 3 или кальцитовыми фильтрами для восстановления жёсткости до нужного уровня, а также регулирования уровня pH и дозирования гипохлорит натрия (NaOCl) для предотвращения образования повторного биологического загрязнения питьевой воды.

Спецификация оборудования

Предварительная обработка. Дисковые фильтры (DF)

Осуществляют грубую фильтрацию до мембран UF, система дисковой фильтрации захватывает и удерживает большое количество твердых частиц, особенно органических твердых частиц и водорослей. Мутная вода просачивается через фильтр, осадок задерживается на внешней стенке и внутренних канавках нескольких сжатых дисков. Во время автоматического цикла очистки, на блоке дисков уменьшается давление, в то время как ряд патрубков, направляющие потоки воды, находятся при высоком давлении между дисками, прокручиваются и промываются. В конце цикла обратной промывки блок дисков снова сжимается, и система возвращается к циклу фильтрации. Система полностью автоматическая, самоочищающаяся, стойка к коррозии, проста в эксплуатации и обслуживании. Фильтр обеспечивает фильтрацию до 130 микрон.

Устройство продолжает обеспечивать необходимый поток фильтрованной воды для подачи ультрафильтрации даже во время операций с обратной промывкой.

Ультрафильтрация (UF)

Мембраны UF используются для удаления мелких частиц. Эта технология используются в очистке воды, и также является предварительной обработкой до подачи в мембраны обратного осмоса. Совмещены с многокомпонентными фильтрами, технология ультрафильтрации имеет преимущества за свою уникальную способность устранять микроорганизмы из воды. Поры мембраны достаточно малы (около 20 нм). Сам процесс безопасен и прост в эксплуатации. Система ультрафильтрации спроектирована для полностью автоматического управления. ПЛК контролирует различные режимы процесса фильтрации: фильтрация, обратная промывка и химически повышенная обратная промывка (CEB).

Система обратной промывки ультрафильтрации

Система использует солевой раствор из обратного осмоса для осуществления обратной промывки ультрафильтрации, с прямой подачей при использовании остаточного давления в потоке солевого раствора, таким образом, нет необходимости использовать насос для этой цели, тем самым будут снижены затраты по потреблению электроэнергия.

Система химически повышенной обратной промывки (CEB)

Автоматическая ультра фильтрационная химически повышенная обратная промывка необходима для предотвращения образования биопленки и отложений на поверхности мембран. Система использует водный фильтрат обратного осмоса и имеет две химически - дозирующие системы для растворов 35% HCl и 10% NaOCl. Каждая дозирующая система состоит из:

  • Дозирующий насос
  • Бак объемом 100 л изготовлен из HDPE
  • Защита от разлива
  • Антисифонные клапаны

Система обратного осмоса (RO)

Дозирование ингибитора против образования твердых отложений/окалины и антиоксиданта

Каждая дозирующая система состоит из:

  • Дозирующий насос
  • Бак объемом 100 л изготовленный из HDPE
  • Защита от разлива
  • Антисифонные клапаны

Подающий насос высокого давления системы обратного осмоса

Поршневой насос высокого давления с электродвигателем мощностью 105 кВт, может работать с производительностью до 43 м³/ч и давлением до 69 бар. Все контактирующие со средой детали сделаны из нержавеющей супердуплексной стали, подходящей для применения на море.

Устройство регенерации энергии

Устройство регенерации энергии (ERD) по технологии изобарной камеры повышает КПД по энергии обратноосмотической морской воды до максимума с помощью восстановления остаточного давления (энергии), содержащегося в отходах солевого раствора, и передающем его в обратноосмотическую питательную воду. Солевой раствор собирается и направляется напрямую в устройство ERD, и его давление при механической транспортировке частично передается питательной входящей через входное отверстие воде.

Мобильная установка оснащена системой восстановления энергии, которая является является теплообменником, работающим под давлением, он объединен с бустерным насосом и электродвигателем мощностью 15кВт. Все детали проточной части изготовлены из нержавеющей супер дуплексной стали, подходящей для применения на море.

Мембраны обратного осмоса.

Мембраны обратного осмоса используются для удаления растворенных частиц в морской воде во время механического процесса, который дает обратное направление давлению и компенсирует осмотическое давление морской воды при прохождении воды через мембраны, в то время как соли задерживаются. Всего 48 шт. 8” тонких пленочных мембран из полиамида.

Оболочка мембран (сосуды высокого давления)

Мобильная установка сконструирована с 8 сосудами под давлением для 6 элементов с много портовой системой, которая устраняет необходимость во внутреннем соединении. Сосуды высокого давления спроектированы для работы под давлением свыше 1000 фунтов/дюйм² (70 бар).

Установка промывки и локальной очистки для глубокой периодической очистки обратноосмотических и ультрафильтрационных мембран включает:

  • Емкость объемом 2500 л изготовлена из полипропилена в комплекте с нагревателем мощностью в 25 кВт
  • Центробежный насос с электродвигателем мощностью 15 кВт и частотно-регулируемым электроприводом
  • Дисковый фильтр в 20 микрон

Аналитика

Аналитические КИП и позволяют удаленным трансмиттерам контролировать поток, давление, кислотность, pH, электропроводимость и температуру на всех необходимых точках.

Управление

Функционирование системы, за исключением установки промывки и локальной очистки, осуществляется автоматически и управляется ПЛК, оснащенной удаленным блоком передачи данных.

  • Панельный компьютер с сенсорным экраном 22"
  • Специальное программное обеспечение

Панель управления и электрический шкаф созданы в соответствии со стандартами ЕС или США, включают все необходимое оборудование и зависят от места назначения оборудования: на стальных листах, с электростатическим окрашиванием в 1,5 мм, с уплотнением и защитой. Оборудование управления и дисплеи расположены на передней панели. Все регуляторы процесса соединены с панелью управления. Устанавливаемые на месте клеммные коробки и устройства, монтируемые вне контейнера, соединены с панелями системы управления/ПЛК с помощью быстроразъёмных соединений для простой установки на месте. Все устройства защиты и блокировки присоединены к панели управления (тепловая магнитная защита электродвигателей, «сухой» режим для защиты насосов и т.д.).

Трубопровод

Все трубы высокого давления и клапаны изготовлены из материала, подходящего для использования на море и в соответствии с лучшими инжиниринговыми технологиями. Все трубы и клапаны низкого давления изготовлены из прочного удовлетворяющего требованиям пластика, такого как поливинилхлорид/полиэтилен высокой плотности (PVC / HDPE.).

Контейнер

Система установлена внутри 40" контейнера, покрытого звукоизоляционным материалом и оснащенного воздушным кондиционером.

Система реминерализации

Реминерализация должна быть произведена в обессоленной воде с целью вытеснения части кальция и магния, удаляемого во время процесса обессоливания обратного осмоса, и проведения стабилизации pH, улучшая, таким образом, вкус воды. Продукты, рекомендованные к дозированию: дигидрат хлористого кальция (CaCl₂*2H₂O), бикарбонат натрия (NaHCO₃) и гидроксид натрия (NaOH).

Система дозирования, предназначенная для подачи 10,4 л/ч 50% раствора CaCl₂*2H₂O; 102,4 л/ч 5% раствора NaHCO₃; и 3,2 л/ч 50% раствора NaOH при максимально потоке фильтрата 84 м³/ч, производимым двумя мобильными установками.

Система реминерализации состоит из следующих компонентов:

  • Один дозирующий насос для 50% раствора CaCl₂*2H₂O.
  • Один дозирующий насос для 5% раствора NaHCO₃.
  • Один дозирующий насос для NaOH 50% раствора.
  • Баки объемом 250 и 1000 л из PE с защитой от разлива
  • Датчик снижения расхода
  • Датчик снижения уровня
  • Антисифонные клапаны
  • Насос для смешивания растворов

Также необходим бак в 10 литров (не включено в данное предложение).

Дозирующая система хлорирования

Хлорирование должно быть проведено в обессоленной воде с целью предотвращения повторного загрязнения микроорганизмами. Рекомендуемая дозировка - 10 мг/л раствора гипохлорита натрия (NaOCl) при концентрации 10% на литр обессоленной воды, что будет гарантировать уровень остаточного хлора свыше 0,5 мг/л в течение периода хранения и распределения.

Система дозировки, предназначенная для введения 0,724 л/ч раствора при максимальном потоке фильтрата 84 м³/ч, производимого двумя установками:

Дозирующая система хлорирования, комплектация:

  • Два дозирующих насоса (один основной, второй резервный)
  • Датчик снижения расхода
  • Бак объемом 150 л изготовлен из PE
  • Датчик снижения уровня
  • Защита от разлива
  • Антисифонные клапаны

Комплект поставки

  • Все оборудование, что указано выше
  • Руководство по эксплуатации с инструкциями, нормативными требованиями и схемами/эскизами.

Обеспечивается Заказчиком

  • Снабжение электроэнергией главной панели управления MMC 380/440В, 50 Гц
  • Плоская площадка с бетонным фундаментом или опорная плита для установки контейнера
  • Система подачи морской воды и насосная система
  • Сбор и удаление водных отходов (концентрат ультрафильтрации и обратного осмоса)
  • Хранение полученной обессоленной воды (фильтрат)
  • Стационарный телефон/интернет для передачи данных, если требуется удаленная работа или мониторинг
  • Химикаты для работы системы, в том числе для пуско-наладки и первого наполнения
  • Трубы и опора трубопровода вне контейнеров
  • Подводка электроэнергии к установке

Эксплуатационные расходы

Электроэнергия:

Наряду со всеми эксплуатационными расходами расходы на электроэнергию самые высокие для любой установки обессоливания морской воды. Благодаря инновационному исполнению, использованию высокоэффективного насосного оборудования и высокотехничному устройству регенерации энергии, установка потребляет всего 2.41 кВтч на 1 м³ чистой воды.

Химические реагенты:

Потребление хим. реагентов варьируется в зависимости от местных условий, но в любом случае система будет потреблять более 360 кг гипохлорит натрия (NaOCl), 40 кг соляной кислоты (HCl), 340 кг метабисульфита натрия и 340 кг ингибитора отложений (антискалант(AS)) в месяц, при работе на максимальной производительности.

Расходные материалы:

В нормальных условиях эксплуатации и ТО ультрафильтрационные мембраны имеют примерный срок службы 7 лет, а мембраны обратного осмоса 4 года.

Мобильная система опреснения морской воды производительность 2000 м³/день состоящая из четырех 40-футовых контейнеров


Предложенная установка состоит из нескольких составных частей, монтированных на скид. Данная конструкция обеспечивает простую и легкую установку на место эксплуатации.

1. Данные проекта

1.1. Производительность

Система опреснения спроектирован для работы с чистым фильтратом с ежедневной производительностью 2000 м³/день.
Так как система состоит из 2 линий, каждая линия имеет производительность 1.000 м³/день.

  • Общая производительность системы: 2 х1000 м³/день
  • Количество линий: 2

1.2. Качество неочищенной воды

  • Обозначение: морская вода
  • Соленость: макс 35000 мг/л

1.3. Очищенная вода

Качество очищенной воды будет соответствовать последним требованиям стандарта ВОЗ, предъявленных к питьевой воде. Следующий уровень будет соблюдаться:

1.4. Границы проектирования

  • Гидравлика : фланцевые соединения на внешней стене контейнера
  • Электрика : главный переключатель и входные сигналы, размещенные на одиночной электрической панели одиночной салазки, где установлены все компоненты.

1.5. Примененные стандарты

Система спроектирована с использованием следующих стандартов и компонентов

Все компоненты отвечают стандартам и законодательству ЕС и подходят для воды, используемой человеком.

Примечание: все оборудование и компоненты будут Европейского происхождения либо происхождения США.

2. Описание поставки

Система будет установлена в четырех 40 футовых стандартных контейнерах повышенной вместимости.
каждой отдельной линии
Количество линий: 2

2.1. Система предварительной обработки

2.1.1 Система с кислотой

Система дозирования кислоты, с емкостью объемом 250 л, устройством на всасе со ступенчатым поплавковым переключателем, напорная линия и дозирующий впрыскиватель.

Система автоматически дозирует поступление продукции, состоит из:

  • Одна емкость объемом 250 л в качестве контейнера раствора
  • Одна электрическая мешалка (та же мешалка, что и в установке для хлорирования воды)
  • Производительность: 10 л/ч при 10 бар

2.1.2. Аналоговый ОВП / измерительные приборы рН

Аналоговый прибор для контроля и измерения рН, обеспечивающее надежное и точное измерение.

Технические данные

  • Диапазон: 0 - 14,00 рН; 0 - 1000 мВ
  • Дисплей: 7 сегментов LED
  • Контроль: аналоговый
  • Калибровка: ручная
  • Рабочая температура среды: 0 - 50 °C; 0% до 95%
  • Заданный режим ВКЛ/ВЫКЛ: два
  • Входное сопротивление: более 10 12 Ом
  • Выход ВКЛ/ВЫКЛ: 2 Выходное напряжение
  • Выход (выработка) регистрирующего устройства: указать при заказа 0 - 20 мА или 4 - 20 мА (макс 500 Ом)
  • Сигнализация: сигнал о макс. значении дозирования / беспотенциальный контактный реле (плавкий предохранитель)
  • Резервный: входной контакт
  • Задержка: программируемый «отложенный» старт
  • Электроснабжение: 24, 115, 230 В переменного тока (уточнить при заказе) 50/60 Гц
  • Потребление энергии: среднее 10 Вт
  • Предохранитель: защита измерительного прибора, выпуска и сигнализации
  • Гальваническая изоляция: по требованию
  • Материал корпуса: ABS IP65
  • Монтаж: на стене
  • Габариты: 225х225х125 мм
  • Нетто вес: 1,2 кг
  • Температурная компенсация: авто: NTC 10 кОм; ручная: 0-100°СM

2.1.3. Многослойный фильтр

  • Кол-во фильтров: 4 х 25%
  • Материал конструкции: полиамид
  • Расчетная производительность: 52 м³/ч
  • Диаметр: 1200 мм
  • Общая длина навеса: 2110 мм
  • Наполнение многослойной конструкции: песок + антрацит
  • Средняя высота: 1550 мм
  • Защита от коррозии (внутренняя): РЕ для пищевого стандарта
  • Давление испытания: 10 бар (изб.)
  • Рабочая температура: 35°С
  • Тип клапана (вход/выход): многофункциональный автоматический клапан

3. Обратный осмос

3.1. Дозирующая система противонакипного средства

Дозирующий насос противонакипного средства с емкостью объемом 1000 л, устройством на всасе со ступенчатым поплавковым переключателем, напорная линия и дозирующий впрыскиватель.
Ниже даны главные характеристики основного оборудования каждой отдельной линии , составляющих целую установку.

  • Одна емкость объемом 1000 л в качестве контейнера раствора
  • Один электронный мембранный дозирующий насос
    Производительность: 20 л/ч при 5 бар

3.2. Предохранительная микронная фильтрующая система, установленная на входе в секцию осмоса

Кол-во: 1 шт
Техническое описание:
Фильтрующие емкости, выполнены для очистки (обессоливания) морской воды при помощи обратного осмоса. Эти фильтры также подходят и химически сопоставимы с химикатами, нормально используемыми в очистке мембран обратного осмоса.

Стойкость к коррозии:

Емкости изготовлены из полиэфирного стеклопластика и имеют футеровку из обогащенной смолы. Все внутренние части изготовлены из неметаллических материалов или из высококачественных материалов.
Металлические уплотняющие изделия - из нержавеющей стали. В емкости нет частей из углеродистой стали с покрытием или из алюминия.
Характерные особенности:
Легкое удаление фильтрующих картриджей на емкостях больше размером. Корзина просто вынимается со всеми картриджными фильтрами. Затем устанавливается новая предварительно заполненная корзина с чистыми картриджными фильтрами.
Стандартные соединения на больших емкостях включают отдельный дренаж, способный переработать (пропустить) полный поток емкости.
Положение соединительных фланцев на входе и выходе можно изменить в соответствии с требованиями заказчика.
Нижний фильтр не пропускает большие объекты попадающих вниз емкости в трубопроводы.
Стандартное расчетное рабочее давление - 6 бар при 21 °C. Имеются также более высокие значения на емкостях поменьше.

  • Количество картриджей: 40 шт.
  • Длина одного картриджа: 40“
  • Макс производительность: 120 м³/ч

Система оснащена манометрами из нержавеющей стали на входе и выходе с глицериновым наполнителем, дренажными трубами и патрубками сапуна для дегерметизации перед заменой фильтровальных устройств или более мелких компонентов для надлежащего функционирования.

3.3. Неочищенная вода

  • Необходимый поток сырой воды: 100 м³/ч
  • Необходимое давление для сырой воды: мин 3 бар
  • Соленость сырой воды: макс 35.000 ppm

3.4. Пермеат (фильтрат)

  • Поток: 42 м³/ч
  • Соленость: макс 400 ppm
  • Давление обработанной воды: 1 бар

3.5. Концентрат

  • Поток: 58 м³/ч

3.6. Рабочее давление

  • 62 бар (макс 70 бар)

3.7. Коэффициент регенерации

3.8. Мембраны:

  • Количество: 84 шт.
  • Тип мембран: спирально-навитые, полиамидные, с высокой сопротивляемостью
  • Материал: тонкоплёночный композитный

3.9. Емкости

  • Количество: 14 шт. с 6 мембранами
  • Диаметр емкости: 8“
  • Тип закрывания: трехсегментный
  • Материал: PRFV 1000 PSI

3.10. Станция химической очистки

Станция монтирована на отдельном скиде и включает в себя следующие основные компоненты:

Емкость хранения очищающего средства:

  • Количество: 1 шт.
  • Материал: РР
  • Емкость: 5 м³
  • Конфигурация: вертикальный цилиндрический

Промывочный насос:

Эксплуатационные данные:

  • Тип: центробежный многоступенчатый
  • Материал: SS 316 L

Предохранительная микронная фильтрующая система

Описание системы - см. п.3.2

  • Количество: 1 шт.
  • Количество картриджей: 15 шт.
  • Длина одного картриджа: 40“
  • Степень фильтрации: 5 микрон

3.11. Автоматическая промывающая система

Система для автоматического заполнения очищающей емкости и полоскания мембран фильтратом при каждом выключении установки.
Это защищает мембраны от большого количества соляного осадка. Время и продолжительность промывки задается на фазе запуска системы.

3.12. Линия высокого и низкого давления

  • материал линии высокого давления: дуплексная нержавеющая сталь
  • материал клапанов линии высокого давления: AISI 904 L/Duplex
  • материал линии низкого давления: пластик DN16 высокой стойкости
  • материал клапанов линии низкого давления пластик DN16 высокой стойкости

3.13. Главный насос высокого давления для герметизации мембран

Мембранная насосная система высокого давления оснащена системой сохранения энергии из супер дуплекса.

Состоит из:

  • Один главный насос высокого давления
  • Один вспомогательный насос
  • Одна система сохранения энергии

Система герметизации высокого давления, технические свойства:

Главный насос высокого давления

  • Количество ступеней: 11
  • Поток: 120 м³/ч
  • Давление на входе: 2.0 бар
  • Давление на выходе: 34,2 бар
  • Температура подачи: 25 °C
  • Подача TDS (полностью растворимые твёрдые вещества): 35,000
  • Эффективность: 83,2%
  • Число оборотов: 2919
  • Поглощенная мощность: 136.0 кВт

Данные двигателя

  • Производитель: Teco или эквивалент
  • Номинальная мощность: 450 л.с - 380В/ 50Гц / 3ф
  • Коэффициент характера нагрузки: 1.10
  • Эффективность: 95.3%
  • Рама: 5011А
  • Оболочка: TEFC
  • Мощность: 144,7 кВт

Данные привода

  • Тип: VFD
  • Оболочка: IP
  • Электроэнергия: 149,2 кВт

Материал:

  • Вал дуплекс: нерж. сталь 2205 кованая
  • Вход и выход: дуплекс нерж. сталь 2205
  • Подшипники ступеней: неметаллические
  • Адаптер двигателя: алюминиевый сплав (анодированный)
  • Муфта двигателя: сталь, никелированная (тип с гибким диском)
  • Защита муфты: нерж. Сталь 316
  • Лапы, регулирующие уровень: сталь (покрытие порошком)
  • Основа двигателя: сталь (окрашенная)
  • Механическое уплотнение: поверхности кремень / графит
  • Дроссельный ниппель и дренажная труба: дуплех нерж. сталь 2205
  • Рабочие колеса и корпус диффузора: дуплех нерж. сталь 2205

Данные бустера

  • Подача потока: 120 м³/ч
  • Поток соляного раствора: 78 м³/ч
  • Давление мембраны: 62.0 бар
  • Давление соляного раствора: 600 бар
  • Выходное давление соляного раствора: 1.0 бар
  • Подача: температура 25 °C
  • Подача: TDS (полностью растворимые твёрдые вещества) 35000
  • Kvo: 11.45; Kvc: 10.37 (значения Kv приблизительные)

Материал:

  • Корпус: болты нерж. сталь 316
  • Подшипники: неметаллические
  • О-кольцо: Buna N
  • Лапы:
  • Корпус: Дуплекс 2507
  • Торцевая заглушка: Дуплекс 2507
  • Ротор: Дуплекс 2507 или = (прутковая заготовка)
  • Шток клапана: Дуплекс 2507

Регулирование давления соляного раствора

НРВ заменяет регулирующий клапан соляного раствора, который обычно используется для регулирования потока соляного раствора. НРВ включает в себя интегрированный регулирующий клапан соляного раствора, который может настраивать поток и давление соляного раствора в рамках примерного диапазона, указанного ниже. Cvo является нижним пределом (открытый), Cvc верхним пределом (закрытый). Если используется центробежный питающий насос высокого давления, понадобится также устройства регулирования потоком и давлением, например дроссельный клапан или привод с частотным преобразователем на подающем насосе.

3.14. КИП

Расходомеры:

  • Необработанной воды
  • Фильтрата (пермеата)
  • Для воды, выдавливающей соляной раствор

Датчик давления и мембранный переключатель

  • Мембрана входная
  • Мембрана выходная
  • Мембранный переключатель для дифференциального давления
  • Датчик низкого давления на всасывании насоса высокого давления
  • Датчик высокого давления на мембране потоке обратного осмоса и фильтрата

Качество необработанной воды:

  • ЕС-метр
  • рН-метр
  • Измерение хлора

Качество фильтрата (пермеата)

  • ЕС-метр

Манометры

С глицериновым наполнителем.

Система также оснащена:

  • датчиком низкого давления на входе в сектор осмоса;
  • переключателем высокого давления;
  • датчиком высокого давления на выходе насоса высокого давления;
  • датчиком высокого давления на фильтрате;
  • поворотной заслонкой с приводом одинарного действия на входе в сектор осмоса;
  • обратным клапаном из нержавеющей стали;
  • обратными клапанами PVC;
  • соленоидными клапана PVC с приводом двойного действия на линии пермеата и т.д.

3.14.1 Система дозирования хлорирующего вещества

  • мембранный дозирующий насос
  • панель управления
  • трубы на стороне всасывания и подачи
  • соединения для впрыскиваний
  • нижний фильтр
  • световая индикация минимального уровня
  • пробы для хранения
  • емкость для продукта для раствора

Характеристики насоса

  • мощность: постоянная регулирующая от 0 до 9 л/ч
  • одиночное впрыскивание: 1,3 с
  • максимальное противодавление: 10 бар
  • макс высота всасывания: 1,5 м
  • напряжение: 220 В переменного тока
  • средний электрический сигнал: 15 - 24 Вт (230 В)
  • Класс защиты: IP 65

Характеристики емкости:

  • Объем: 500 л
  • Тип: вертикальный цилиндрический
  • Материал: РЕ

3.15. Система контроля

Система контроля состоит из главного ПЛК, установленного в центральной станции управления. Количество входов-выходов следующее:

  • Пункт вход-выход для контроля и регулирования подачи воды/предварительной обработки
  • Пункт вход-выход для каждой линии осмоса (контроль и регулирование)
  • Пункт вход-выход дополнительной обработки (контроль и регулирование)
  • Модуль вход-выход для станции очистки.

3.16. Электрическая панель управления с микропроцессором с цифровым дисплеем:

  • Материал: пластина с покрытием
  • Класс защиты: IP 55
  • Открытие: дверь со специальным ключом
  • Корпус фронтиспис: электрический рубильник напряжения 0/1

Глобальной проблемой человечества в новом тысячелетии становится проблема получения пригодной для питья пресной воды. Дефицит пресной воды остро ощущается на территории более 40 стран, расположенных в засушливых областях земного шара и составляющих около 60% всей поверхности суши. Мировое потребление воды в начале XXI века достигло 120-150·10 9 м 3 в год. Растущий мировой дефицит пресной воды может быть скомпенсирован опреснением солёных (солесодержание более 10 г/л) и солоноватых (2-10 г/л) океанических, морских и подземных вод, запасы которых составляют 98% всей воды на земном шаре.

Пресная вода является ценной составной частью морской воды. Нехватка пресной воды все больше ощущается в индустриально развитых странах, как США и Япония, где потребность в пресной воде для бытовых нужд, сельского хозяйства и промышленности превышает имеющиеся запасы. В таких странах, как Израиль или Кувейт, где уровень осадков очень низок, запасы пресной воды не соответствуют потребностям в ней, которые возрастают в связи с модернизацией хозяйства и приростом населения. В дальнейшем человечество окажется перед необходимостью рассматривать океаны как альтернативный источник воды.

Россия по ресурсам поверхностных пресных вод занимает первое место в мире. Однако до 80% этих ресурсов приходится на районы Сибири, Севера и Дальнего Востока. Всего около 20% пресноводных источников расположено в центральных и южных областях с самой высокой плотностью населения и высокоразвитыми промышленностью и сельским хозяйством. Некоторые районы Средней Азии (Туркмения, Казахстан), Кавказа, Донбасса, юго-восточной части РФ, обладая крупнейшими минерально-сырьевыми ресурсами, не имеют источников пресной воды. Вместе с тем ряд районов нашей страны располагает большими запасами подземных вод с общей минерализацией от 1 до 35 г/л, не используемых для нужд водоснабжения из-за высокого содержания растворенных в воде солей. Эти воды могут стать источниками водоснабжения только при условии их дальнейшего опреснения.

Важным параметром морской воды при опреснении является солёность, под которой подразумевается масса (в граммах) сухих солей (преимущественно NaCl) в 1 кг морской воды. Средняя солёность вод мирового океана постоянна и составляет 35 г/кг морской воды.

Наряду с NaCl в морской воде содержатся K + , Mg 2+ , Ca 2+ , Sr 2+ , Br - , F - , H 3 BO 3 , которые можно получать из морской воды в промышленных масштабах (Таблица). Среди других веществ, содержащихся в морской воде в концентрациях от 1 млн. д. до 0,01 млн. д., встречаются литий (Li), рубидий (Rb), фосфор (P), йод (J), железо (Fe), цинк (Zn) и молибден (Mo). Кроме этих элементов в морской воде обнаружено около 30 других элементов в более низких концентрациях.

Химические вещества, содержащиеся в мор ской воде
в концентрации выше 0,001 г/кг (1 млн.д.) по
весу

Высокая концентрация солей делает морскую воду непригодной для питьевых и хозяйственных целей. Поэтому её необходимо опреснять, т.е. проводить обработку с целью снижения концентрации растворённых солей до 1 г/л. Опреснение воды может осуществляться химическими (химическое осаждение, ионный обмен), физическими (дистилляция, обратный осмос или гиперфильтрация, электродиализ, вымораживание) и биологическими методами с использованием способности некоторых фотосинтезирующих водорослей избирательно поглощать NaCl из морской воды.

За последние годы были также предложены новые альтернативные методы опреснения морской воды за счёт воздействия ультразвуком, акустическими, ударными волнами, электромагнитными полями и др.

Многообразие существующих методов получения пресной воды объясняется тем, что ни один из них не может считаться универсальным, приемлемым для данных конкретных условий. Характеристики методов опреснения, получивших наибольшее практическое применение приводятся ниже.

Химическое опреснение

При химическом способе опреснения в морскую воду вводят специальные осаждающие реагенты, которые при взаимодействии с растворёнными в ней ионами солей (хлориды, сульфаты), образуют нерастворимые, выпадающие в осадок соединения. Вследствие того, что морская вода содержит большое количество растворенных веществ, расход реагентов весьма значителен и составляет примерно 3-5% количества опресненной воды. К веществам, способным образовывать нерастворимые соединения с ионами натрия (Na +) и хлора (Cl -), относятся соли серебра (Ag +) и бария (Ba 2+), которые при обработке солёной воды образуют выпадающие в осадок хлористое серебро (AgCl) и сернокислый барий (BaSO 4). Эти реагенты дорогостоящие, реакция осаждения с солями бария протекает медленно, соли бария токсичны. Поэтому химическое осаждение при опреснении воды используется очень редко.

Дистилляция

Дисцилляция воды (перегонка) основана на различии в составе воды и образующегося из нее пара. Процесс осуществляется в специальных дистилляционных установках – опреснителях путем частичного испарения воды и последующей конденсации пара. В процессе дистилляции более летучий компонент (низкокипящий) переходит в паровую фазу в большем количестве, чем менее летучий (высококипящий). Поэтому при конденсации образовавшихся паров в дистиллят переходят низкокипящие, а в кубовый остаток - высококипящие компоненты. Если из исходной смеси отгоняется не одна фракция, а несколько, дистилляция называется фракционной (дробной). В зависимости от условий процесса различают простую и молекулярную дистилляцию.

Дистилляционная опреснительная установка состоит из испарителя 1, снабженного теплообменным устройством для подвода к воде необходимого количества теплоты; нагревательного элемента 2 для частичной конденсации пара, выходящего из испарителя (при фракционной дистилляции); конденсатора 3 для конденсации отбираемого пара; насоса 4; сборников дистиллята 5 и кубового остатка 6 (рис. 1).

Рис. 1 . Схема одноступенчатого дистилляционного опреснителя: 1 - корпус испарительной камеры; 2 - нагревательный элемент; 3 - конденсатор; 4 - насос; 5 - сборник дистиллята.

Современные дистилляционные опреснители подразделяются на одноступенчатые, многоступенчатые с трубчатыми нагревательными элементами, или испарителями, многоступенчатые с мгновенным вскипанием и парокомпрессионные.

Многоступенчатый испаритель (рис. 2) состоит из ряда последовательно работающих испарительных камер с трубчатыми нагревательными элементами. Нагреваемая солёная вода движется внутри трубок нагревательного элемента, греющий пар конденсируется на внешней поверхности. При этом нагрев и испарение воды в первой ступени осуществляются паром рабочего котла, работающего на дистилляте; греющим паром следующей ступеней служит вторичный пар предыдущей испарительной камеры. Данная установка способна вырабатывать около 0.9 т. пресной воды на 1 т. первичного пара. Расход тепла на получение 1 кг пресной воды в одноступенчатом дистилляционном опреснителе составляет около 2400 кдж.


Рис. 2. Схема многоступенчатого дистилляционного опреснителя с трубчатыми нагревательными элементами: 1 - испарительные камеры 1, 2, 3 и 4-й ступеней; 2 - трубчатые нагревательные элементы; 3 - концевой конденсатор; 4 - брызгоулавливатель; 5 - насос.

В опреснителях с мгновенным вскипанием (рис. 3) солёная вода проходит последовательно через конденсаторы, встроенные в испарительные камеры, нагреваясь за счёт тепла конденсации, затем поступает в главный подогреватель и нагревается выше температуры кипения воды в первой испарительной камере, где происходит процесс кипения. Затем пар конденсируется на поверхности трубок конденсатора, а конденсат стекает в конденсатор и насосом откачивается потребителю. Неиспарившаяся вода перетекает через гидрозатвор в следующую камеру с более низким давлением, где она снова вскипает, и т.д. Рекуперация тепла фазового перехода в многоступенчатом опреснителе позволяет снизить расход тепла по сравнению с одноступенчатым дистилляционным опреснителем на 1 кг пресной воды до 250-300 кдж.


Рис. 3. Схема многоступенчатого дистилляционного опреснителя с мгновенным вскипанием: I, II, III, IV и N - камеры испарения; 1 - насос; 2 - паровой эжектор; 3 - конденсатор эжектора; 4 - подогреватель; 5 - брызгоулавливатель; 6 - конденсатор; 7 - поддон для сбора конденсата.

Основным преимуществом многоступенчатых дистилляционных опреснительных установок является то, что на единицу первичного пара можно получить значительно большее количество обессоленной воды. Так при одноступенчатом испарении на 1 т первичного пара получают около 0.9 т опресненной воды, а на установках, имеющих 50-60 ступеней – 15-20 т опресненной воды. Удельный расход электроэнергии в дистилляционных установках составляет 3,5-4,5 кВт час/м 3 дистиллята.

Затраты при осуществлении любого варианта процесса дистилляции связана с большими затратами тепловой энергии, составляющими 40% от стоимости получаемой воды (если проводить дистилляцию в вакууме, температура кипения воды понижается до 60 0 С и дистилляция требует меньших тепловых затрат). В качестве источников тепловой энергии используются атомные и тепловые электростанции. Сочетание дистилляционной установки с тепловой электростанцией на минеральном или ядерном топливе, так называемая многоцелевая энергетическая установка, позволяет обеспечить промышленный район всеми видами энергетических услуг по минимальной себестоимости при наиболее рациональном использовании топлива. В пустынных южных районах и на безводных островах применяются солнечные опреснители; которые производят в летние месяцы около 4 л воды в сутки с 1 м 2 поверхности, воспринимающей солнечную радиацию.

Эффективность работы дистилляционных испарителей ограничена образованием накипи в системе циркуляции горячего рассола. По мере выпаривания морской воды из дистилляционого опреснителя, раствор соли становится более концентрированным, и в конечном итоге осаждается на стенках аппарата в виде накипи из солей жёсткости, состоящих, главным образом, из хлоридов и карбонатов кальция (CaCO 3 , CaCl 2) и магния (MgCO 3 , MgCl 2), что ухудшает теплопроводность стенок теплообменника, приводит к разрушению труб и теплообменного оборудования. Это требует применения специальных антинакипных добавок, что существенно увеличивает энергозатраты на проведение дистилляции до 10 кВт час/м 3 обессоленной воды. Поэтому в последние годы предложены другие способы опреснения морской воды, которые не связаны с необходимостью ее испарения и конденсации.

Ионный обмен

Метод основан на свойстве твёрдых полимерных смол разной степени сшивки, ковалентно связанных с ионогенными группами (иониты), обратимо обмениваться ионами растворённых в воде солей (проивоионы).

В зависимости от заряда иониты подразделяются на положительно заряженные катиониты (H +) и отрицательно заряженные аниониты (OH -). В катионитах – веществах, аналогичным кислотам, анионы представлены в виде нерастворимых в воде полимеров, а катионы (Na +) подвижны и обмениваются с катионами растворов. В противоположность катионитам, аниониты - по химической структуре основания, нерастворимую структуру которых образуют катионы. Их анионы (обычно гидроксильная группа ОН -) способны обмениваться с анионами растворов.

Процесс ионнообменного опреснения воды заключается в последовательном прохождении воды через через неподвижный слой ионита в периодическом процессе или противоточным движением воды и ионита в непрерывном процессе (рис. 4). В этом процессе катионы и анионы солей обрабатываемой воды последовательно связываются с ионитами, в результате происходит её обессоливание. Соотношение ионита, анионита и катионита обычно составляет от1:1 до 1.5:1.0 по массе.

Рис. 4. Схемы ионообменного опреснения воды (М 2+ = Са 2+ , Mg 2+) на неподвижном слое ионита (а) и в противотоке (б) с движущимися слоями ионита (NaR, MR 2) и потоками воды.

Кинетика ионного обмена включает 3 последовательные стадии: перемещение сорбируемого иона к поверхности глобулы ионита (1), ионный обмен (2), перемещение вытесняемого иона внутри глобулы ионита и от его поверхности в растворе (3).

На скорость ионного обмена влияют следующие факторы: доступность фиксированных ионов внутри каркаса ионита, размер гранул ионита, температура, концентрация раствора. Общая скорость процесса ионного обмена определяется совокупностью процессов, происходящих в растворе (диффузия противоионов к грануле и от гранулы ионита) и в ионите (диффузия противоионов от поверхности к центру гранулы ионита и в обратном направлении; обмен противоионов ионита на противоионы из раствора). В условиях, приближенных к реальным условиям очистки воды, лимитирующим фактором, определяющим скорость ионного обмена, является диффузия ионов внутри гранулы ионита.

Обменная способность ионообменных смол постепенно снижается, и, в конечном итоге, исчерпывается. В этом случае требуется регенерация раствором кислоты (катионит) или щелочи (анионит), что восстанавливает исходные химические свойства смол. Катионит регенерируется 5%-м раствором серной кислоты, которую пропускают последовательно через катионит до появления кислой реакции. Удельный расход серной кислоты 55-60 г/г-экв. сорбированных катионов. Анионит регенерируется раствором 5%-ной кальцинированной соды или едкого натра с удельным расходом 70-75 г на 1 г-экв. задержанных анионов.

Ионный обмен применяется для получения обессоленной и умягчённой воды в тепловой и атомной энергетике и в промышленности; в цветной металлургии - при комплексной гидрометаллургической переработке руд, в пищевой промышленности, в медицинской промышленности при получении антибиотиков и и других лекарственных средств, а также для очистки сточных вод в целях организации оборотного водоснабжения. В настоящее время также разрабатываются ионообменные методы комплексного извлечения из океанской воды ценных минералов.

Промышленные аппараты для реализации ионного обмена подразделяются на 3 группы: установки типа смесителей-отстойников, установки с неподвижным и подвижным слоями ионита. Аппараты первого типа чаще всего используют в гидрометаллургии. В аппаратах с неподвижным слоем ионита исходные и обессоленыые растворы подаются в одном направлении (поточные схемы) или в противоположных (противоточные схемы). Такие аппараты используются для ионообменной очистки растворов, при умягчении и обессоливании морской воды. В непрерывно действующих противоточных аппаратах подвижный ионит перемещается сверху вниз под действием силы тяжести. Конструктивно противоточные аппараты подразделяются на 3 группы: со взвешенным или кипящим слоем ионита, с непрерывным движущимся слоем ионита и с двищущимся раствором через ионит.

В зависимости от заданной степени обессоливания воды проектируют одно-, двух и трех ступенчатые ионнообменные установки. Остаточное солесодержание при одноступенчатом ионообменном опреснении составляет 20 мг/л. Для получения воды с солесодержанием до 0,5 мг/л применяют установки с двухступенчатой схемой Н + - и ОН - – ионирования.

Ионообменный способ опреснения воды имеет ряд достоинств: простота оборудования, малый расход исходной воды на собственные нужды (15-20% производительности установки), малый расход электроэнергии, малый объем ных сбросных вод.

Недостаток ионообменного метода - сравнительно высокий расход реагентов, технологическая сложность процесса, который лимитируется исходным уровнем солесодержания обрабатываемой воды, определяющегося экономическими затратами. Рентабельность ионного обмена при опреснении воды обычно ограничивается исходным содержанием растворенных солей 1.5-2.5 г/л. Однако при необходимости, когда себестоимость воды не играет существенной роли, этим методом можно опреснять воду с достаточно высоким солесодержанием.

Обратный осмос

При опреснении воды методом обратного осмоса морскую воду пропускают через полупроницаемые мембраны под воздействием давления, существенно превышающего разницу осмотических давлений пресной и морской воды (для морской воды 25-50 атм.). Такие мембраны изготавливаются отечественной промышленностью из полиамида или ацетата целлюлозы и выпускаются в виде полых волокон или рулонов. Через микропоры этих мембран могут свободно проникать небольшие молекулы воды, в то время как более крупные ионы соли и другие примеси задерживаются мембраной.

Обратный осмос используется в нашей стране с начала 1970 годов в различных технологиях очистки воды от примесей, в том числе для опреснения воды. Современные промышленные установки обратного осмоса включают фильтр тонкой очистки воды, систему реагентной подготовки, насос высокого давления, блок фильтрующих модулей, блок химической промывки.

В установках по опреснению воды методом обратного осмоса трубы изготавливают из пористого материала, выложенного с внутренней стороны пленкой из ацетата целлюлозы, выполняющей функции полупроницаемой мембраны. Опреснительная установка состоит из множества аналогичных труб, уложенных параллельно друг другу, через которые насосом высокого давления (5-10 Мн /м 2 , или 50-100 бар ) непрерывно прокачивается морская вода, а отводится два потока -обессоленная - пермеат, и вода с концентрированными солями - концентрат, которая сливается в сток (рис. 5). Поток пресной воды через мембрану пропорционален приложенному внешнему давлению. Максимальное давление определяется собственными характеристиками обратноосмотической мембраны. При слишком высоком давлении мембрана может разорваться, забиться присутствующими в воде примесями или пропускать слишком большое количество растворенных солей. При слишком низком давлении процесс замедляется.


Рис. 5. Схема процесса опреснения воды методом обратного осмоса.

Обратный осмос обладает существенными преимуществами по-сравнению с другими методами опреснения воды: энергетические затраты сравнительно невелики, установки конструктивно просты и компактны, работа их может быть легко автоматизирована. Управление системой обратного осмоса осуществляетсяв полуавтоматическом и автоматическом режиме. Для уменьшения образования нежелательных отложений солей в полостях труб применяются ингибиторы осадкообразования. Для снятия осадков солей с поверхности мембран используется система химической промывки. Для контроля качества очистки воды и значения рН - проточные измерители солесодержания и рН-метры. Контроль расхода пермеата и концентрата осуществляется проточными расходомерами.

Степень опреснения воды и производительность мембраны по опресненной воде зависят от различных факторов, прежде всего от общего солесодержания исходной воды, а также солевого состава, давления и температуры. Так, при опреснении соленой воды из скважины, содержащей 0,5% растворенных солей, при давлении 50 атм в течение суток удается получить приблизительно 700 л пресной воды с 1 м 2 мембраны. Поскольку для получения большой площади поверхности необходимо очень много тонких труб, процесс обратного осмоса не находит широкого применения для получения боль­ших количеств пресной воды. Однако этот процесс представляется весьма перспективным, если в будущем будут разработаны улучшенные низконапорные высокоселективные энергосберегающие мембраны, особенно для опреснения соле­ной воды из скважин. Эта вода имеет более низкую концентрацию растворенных со­лей по сравнению с морской водой, что позволяет проводить ее опреснение при более низких давлениях.

Электродиализ

Данный процесс мембранного разделенияоснован на способности ионов растворённых в воде солей перемещаться через мембрану под действием градиента электрического поля. При этом катионы перемещаются по направлению к отрицательному электроду (катоду), а анионы движутся в противоположном направлении к положительно заряженному электроду (аноду). Катионы и анионы разделяют, используя специальные проницаемые для ионов ионоселективные мембраны. В результате в ограниченном мембранами объёме, происходит снижение концентрации солей.

Ионноселективные мембраны, применяемые для электродиализа, изготовляют из термопластичного полимерного материала (полиэтилен, полипропилен) и ионообменных смол (КУ-2, ЭДЭ-10П и др.) в виде гибких листов прямоугольной формы. Они имеют большую механическую прочность, высокую электропроводность и высокую проницаемость для ионов. Кроме того, они обладают высокой селективностью и низким электросопротивлением, которое составляет от 2 Ом/см 2 до 10 Ом/см 2 на единицу поверхности ионообменной мембраны. Срок службы мембран в среднем 3-5 лет.

Электродиализные опреснители представляют собой многокамерные аппараты фильтр-прессового типа, состоящие из камер, ограниченных с одной стороны катионитовой, с другой - анионитовой мембранами, разделяющими объём аппарата на множество полостей. Камеры размещены между катодом и анодом, к которым подведён постоянный электрический ток (рис. 6).


Рис. 6. Схема многокамерного электродиализного опреснителя: 1 - анод; 2 - катод; 3 - анионитовая мембрана; 4 - катионитовая мембрана; В - опресняемая вода; Р - рассол.

Опресняемая вода поступает в опреснительные камеры, где под действием электрического поля катионы и анионы растворённых в воде солей движутся в противоположных направлениях к катоду и аноду соответственно. Поскольку катионитовые мембраны проницаемы в электрическом поле для катионов, но непроницаемы для анионов, а анионитовые мембраны проницаемы для анионов, но непроницаемы для катионов, в опреснительных камерах происходит селективное разделение определённых типов ионов солей. При этом удаляемые из воды соли концентрируются в рассольных камерах, откуда они удаляются вместе с промывочной солёной водой.

Расход электроэнергии на опреснение воды электродиализом зависит от исходного солесодержания опресняемой воды (2 вт·ч на 1 л при опреснении воды с солесодержанием 2,5-3 г/л и 4-5 вт· ч на 1л при опреснении воды с содержанием солей 5-6 г/л). Выход пресной воды в электродиализных установках составляет 90-95%.

В нашей стране получили распространение электродиализные опреснительные установки серии ЭДУ (ЭДУ-5, ЭДУ-50, ЭДУ-100, ЭДУ-1000), производительностью от 5 до 1000 м 3 пресной воды в сутки. Они применяются для опреснения морской воды при получении питьевой и технической воды, при обессоливании сточных вод гальванического производств (гальванических стоков), для концентрирования сточных вод, содержащих ценные компоненты (например, драгоценные металлы), перед последующим извлечением этих компонентов. Чаще всего процесс электродиализа применяют для обессоливания воды, содержащей не более 10 г/л растворённых солей. В этом случае процесс электродиализа является более экономичным по сравнению с обратным осмосом и дистиляцией. При помощи электродиализа можно также концентрировать растворы. Благодаря этому электродиализ применяется при выделения хлористого натрия (NaCl) и других солей из морской воды. Электродиализ применяется также для предочистки воды для теплоэнергетических установок.

Преимуществом электродиализа по сравнению с обратным осмосом является то, что в этом процессе используются термически и химически более стойкие мембраны, что позволяет проводить процесс опреснения воды при повышенных температурах.

Замораживание

Данный метод основан на том, что в естественных природных условиях лед, образующийся из морской воды, является пресным, поскольку образование кристаллов льда при температуре ниже температуры замерзания происходит только из молекул воды (явление криоскопии). При искусственном медленном замораживании соленой морской воды вокруг центров кристаллизации образуется пресный лед гексагональной игольчатой структуры со средней плотностью 930 кг/м 3 . При этом в межигольчатых каналах концентрация раствора и его плотность, повышаются, и он, как более тяжелый, по мере замораживания оседает вниз. При последующей сепарации, промывки и таянии кристаллического льда образуется пресная вода с содержанием солей 500-1000 мг/л NaСl.

Замораживание морской воды проводят в кристаллизаторах (контактные, вакуумные, с теплообменом через стенку) в условиях непосредственного контакта охлаждаемого раствора с хладагентом – газообразным или жидким.

Для лучшего опреснения морского льда применяется фракционное плавление при температуре 20°С с промывкой и сепарацией кристаллов льда от маточного раствора методами фильтрования, гидравлического прессования и центрифугирования.

Данный метод применяется для концентрирования непищевых продуктов, для опреснения морской воды, концентрирования и разделения химических растворов и др. Он достаточно прост и экономичен, но требует сложного оборудования и энергоёмок. Поэтому на практике он используется чрезвычайно редко.

В нашей стране разработан газогидратный метод опреснения воды, который по аппаратурному оформлению аналогичен замораживанию со вторичным хладоагентом . Этот метод основан на способности некоторых углеводородных газов (пропан, циклопропан, бутан, изобутан, этилен, фреон-31, фреон-40 и др.) при определенных температуре и давлении образовывать при взаимодействии с водой соединения клатратного типа (газогидраты) общей формулы М nН 2 О (М - молекула гидратобразующего газа), с их последующей сепарацией от рассола и плавлением. В зависимости от природы газа и условий проведения процесса, газогидраты образуются из 46 молекул воды и 6 (газогидраты I) или 8 молекул (газогидраты II) газа.

Принципиальные основы газогидратного метода опреснения воды заключаются в следующем: в замораживаемую соленую воду вводят гидратобразующий газ и после формирования кристаллической фазы (газогидрата) ее отделяют от рассола, образовавшегося в результате отбора от исходной соленой воды части молекул Н 2 О, расходованных на образование газогидрата; кристаллы газогидрата отмывают от рассола, плавят и получают пресную воду. Выделившийся при плавлении газогидрата газ может быть рекуперирован.

Обладая всеми преимуществами контактного вымораживания, газогидратный метод выгодно отличается более высокой температурой проведения процесса, что позволяет уменьшить энергетические затраты и потери холода в окружающую среду.

Разновидностью этого метода является опреснение морской воды с помощью попутного газа из смеси бутана с пропаном. Замораживаемую морскую воду обрабатывают попутным газом; содержащие воду кристаллогидраты углеводородов образуют твёрдую кристаллическую фазу (одна молекула пропана присоединяет 17 молекул воды). Застывшую кристаллическую массу затем разделяют. Для этого достаточно снизить давление и несколько повысить температуру: углеводороды улетучиваются, остается пресная вода. После улавливания и ожижения углеводороды возвращаются в цикл.

Необходимо подчеркнуть, что при выборе метода опреснения воды следует уделять внимание наличию в морской воде дейтерия в виде тяжелой воды D 2 О. Соотношение между тяжёлой и обычной водой в природных водах составляет 1:5500. Разные природные воды содержат различное содержание дейтерия. Обычная водопроводная вода содержит около 100 г дейтерия на тонну воды, а морская вода от 130 до 150 г дейтерия на тонну воды.

Физико-химические свойства тяжёлой воды отличаются от таковых для обычной воды. Молекулярная масса D 2 O на 10% превышает массу Н 2 О. Такая разница приводит к существенным различиям в физических, химических и биологических свойствах тяжёлой воды. Тяжёлая вода кипит при 101.44 0 С, замерзает при 3,82 0 С, имеет плотность при 20 0 С 1,105 г/см 3 , причём максимум плотности приходится не на 4 0 С, как у обычной воды, а на 11,2 0 С (1,106 г/см 3). Большая прочность связи D-O, чем H-O, обусловливает различия в кинетике реакций тяжелой и обычной воды. Подвижность дейтерия D + меньше, чем подвижность протия Н + , константа ионизации тяжёлой воды в 5 раз меньше константы ионизации обычной воды. Химические реакции и биохимические процессы в D 2 O значительно замедлены. В смесях тяжёлой воды с обычной водой с большой скоростью происходит изотопный обмен: Н 2 O + D 2 O = 2 HDO.

Тяжёлая вода в высоких концентрациях токсична для организма. Для животных клеток предельная концентрация 2 H 2 O составляет 25 об.%, для клеток растений – 50 об.%, для простейших – 70-80%. Поэтому целесообразно проводить тщательный контроль изотопного состава получаемой пресной воды.

Таким образом Выбор метода и технологии опреснения воды зависит от предъявляемых к воде требований по качеству и солесодержанию, а также технико-экономических показателей. В зависимости от реализуемого способа опреснения воды применяются различные типы опреснительных установок. Дистилляционные опреснительные установки (однокорпусные и многокорпусные, по способу опреснения - парокомпрессионные и солнечные) применяются при опреснении морской воды и солёных вод с высоким солесодержанием до 35 г /л. Опреснение морской воды электродиализом и гиперфильтрацией (обратным осмосом) экономично при солесодержании 25 г /л , ионным обменом - менее 25 г /л . Из всего объёма получаемой в мире опреснённой воды 96% приходится на долю дистилляционных опреснительных установок, 2,9% - электродиализных, 1% - обратноосмотических и 0,1% - на долю замораживающих и ионообменных опреснительных установок.

Главная задача опреснения воды заключается в том, чтобы проводить процесс с минимальной затратой энергии и минимальны­ми расходами на оборудование. Это требование важно потому что страна, которая вынуждена в большей мере полагаться на опресненную воду, должна выдерживать экономическую конкуренцию с другими странами, располагающими более обширными и дешевыми источниками пресной воды.

Проектные разработки показывают, что транспортировка пресной воды из естественного источника даже на расстояние до 400-500 км дешевле опреснения только для небольших водопотребителей. Оценка прогнозных эксплуатационных запасов солоноватых и соленых подземных вод в засушливых районах с учетом удаленности большинства из них от естественных пресноводных источников позволяет сделать вывод о том, что опреснение является для них единственно возможным и экономически оправданным способом водообеспечения.

Применяемые в технике опреснения соленых вод методы могут быть эффективно использованы для возвращения природе использованной воды, не ухудшающей состояния пресных водоемов.

Литературные источники :

Мосин O.В. Физико-химические основы опреснения морской воды // Сознание и физическая реальность, 2012, № 1, с. 19-30.

Вода – главный источник жизни на планете, основа всего живого и всех организмов. Без нее человек не может долго прожить, однако, для питья годится далеко не всякая вода. Начнем с того, что она может быть загрязнена, в таком случае, Вы рискуете получить проблемы со здоровьем, поэтому, ее необходимо . А еще может случиться так, что вся вода, которая окажется в Вашем распоряжении, будет соленой, морской. Ну, мало ли, может Вы пережили кораблекрушение и дрейфуете на плоту в море. Или оказались на необитаемом острове. Или же Вы – гордый сын пустыни, в которой миллионы нефти и при этом нет пресной воды. На морской воде человек долго не протянет, так что же делать в такой ситуации? К счастью, человечество, очевидно, не от хорошей жизни, изобрело несколько способов опреснить морскую воду . Вам останется лишь выбрать из них наиболее подходящий.

Химический метод ионного обмена

Это относительно новый способ, который позволял открыть новые перспективы в области опреснения воды. Заключается он в прогоне воды через фильтры, содержащие в себе иониты. Иониты — это особые вещества, имеющие зернистую структуру и представляют собой органические кислоты и основания. Нерастворимы в воде и имеют свойство обменивать свои ионы на ионы, входящие в состав исходной воды. Между собой разделяются по типу обмениваемого иона на те, которые обменивают катионы, сюда относятся Са +2 , Mg +2 , Na+ и прочие, и те, что обменивают анионы, это вещества Cl-, SO -2 4 и прочие. Опресняемая вода при этом может содержать соли до трех грамм на литр.

Ионные фильтры бывают либо напорные, либо безнапорные. Их главное отличие в том, что напорные фильтры устанавливаются на подземные источники воды, не требующие предварительной очистки, а безнапорные – на поверхностные воды. Здесь уже требуется предварительная очистка и обеззараживание.

К ионитам предъявляются определенные требования. Они не должны изменять свойств воды и приводить к появлению вредных для здоровья человека веществ.

Электродиализ

Сводится к помещению воды в электрическое поле. При этом, катионы и анионы воды движутся к предварительно погруженному в нее катоду и аноду. Опресняющая установка оборудована специальными мембранами, проницаемыми для катионов и анионов. Это позволяет скапливать между этими перегородками опресненную воду. Изначально, все это было просто научным экспериментом. Однако, со временем, стоимость электроэнергии значительно снизилась, что сделало возможным применение электродиализа в крупных масштабах. Также, этот способ комбинируется с предыдущим, когда пропускающие мембраны изготавливаются с включением ионитов.

Указанные методы пригодны для промышленного опреснения. Используются в засушливых регионах, где наблюдается острая нехватка пригодной для питья воды. Эти способы требуют специального и весьма дорогостоящего оборудования и поэтому малопригодны в домашних, не говоря уже о походных, условиях. Здесь используются другие способы. Так, в домашних условиях, соленую воду можно дистиллировать и частично замораживать. А в походных – собирать конденсат с помощью открытого источника огня, солнечных лучей и топить снег и лед. Рассмотрим это более подробно.

Опреснение воды в домашних и походных условиях

Для преобразования морской воды в пресную в домашних условиях, используется дистилляция и заморозка . И то и другое приводит к изменению агрегатного состояния воды – либо превращению ее в пар, либо в лед, в результате которого вода избавляется от значительной части содержащихся в ней солей.

Дистилляция воды

Дистилляция заключается в нагреве воды, ее дальнейшему испарению и сбору конденсата в отдельной емкости. Лучше всего для дистилляции подходит самогонный аппарат. Существуют специальные дистиллирующие установки, которые работают при температуре, близкой к 100 градусам, попутно обеззараживая ее. Минусом дистиллируемой воды является то, что она не имеет ни вкуса ни запаха. Пить ее, мягко говоря, неприятно. Благо, некоторые современные установки имеют функцию добавления в такую воду минеральной воды, для придания хоть какого-то вкуса.

Конденсация воды

Если же самогонного аппарата нет под рукой, то можно воспользоваться методом конденсации . Соедините бутылку с водой с пустой бутылкой скотчем и уложите их в самое теплое или солнечное место. При этом, пустую бутылку следует установить чуть выше чем полную. Спустя определенное время будет собираться чистый конденсат, который будет пригоден для питья.

Для опреснения сгодится и широкий таз. В таз заливается вода, а в его середину устанавливается пустая емкость. Поверх всего этого натягивается пакет или пленка и герметично закрепляется. Посередине кладется небольшой груз, и вся эта конструкция размещается в самом теплом или солнечном месте. Спустя некоторое время в емкость будет собираться конденсат.

Замораживание воды

Замораживание соленой воды требует наличия морозильной камеры. Способ этот прост и легок, поскольку понятен и не требует сооружения каких-либо конструкций. Просто налейте в емкость соленую воду и разместите ее в морозилке. Затем, необходимо тщательно следить за ней, чтобы она не замерзла полностью. Пресной водой будет лишь лед на поверхности, и если емкость промерзнет целиком, то соль никуда не денется. Поэтому, следим за процессом и собираем образующийся ледок. Соль будет скапливаться и поэтому не нужно вычерпывать из емкости всю воду. Как только Вы опреснили две трети емкости с соленой водой, вылейте остаток и наберите новую.

Придется импровизировать, потому что вряд ли кто-то додумается взять с собой в поход портативный опреснитель. Но голь на выдумки хитра, поэтому, если Вы оказались в безвыходном положении, то включите свою фантазию – можно соорудить импровизированный дистиллятор из подручных средств, буквально из желудей и шишек и выпаривать воду на открытом огне, либо же воспользоваться способом с тазом, но вместо таза использовать вырытую яму.

Вкус опресненной воды

Да, вот это уже действительно проблема. Вода, которая прошла дистилляцию и перегонку не имеет ни вкуса ни запаха, она просто никакая. Конечно, она чистая и безопасная для здоровья, да, без жидкости человек долго не проживет, однако, употребление безвкусной пресной воды способно отбить волю к жизни даже у самого заядлого выживальщика. Разумеется, если Вы оказались один на необитаемом острове и из веток с палками смогли соорудить себе дистиллятор, а потом еще полдня ждали, пока он осилит перегнать кружку воды, то выбор-то у Вас небольшой: либо пить, что есть, либо искать нормальный , либо садиться и помирать от жажды. Помирать никому не хочется, а источником может и не оказаться, тогда придется пить, что есть. Вашу горькую участь можно слегка скрасить, добавив в жидкость что-то, что способно придать вкус или запах, да хоть ту же соленую воду, в разумных пропорциях.