Все о тюнинге авто

Верхний концентрационный предел можно рассчитать по. Концентрационные пределы воспламенения. Быть легко читаемы

Нижний (верхний) концентрационный предел распространения пламени – минимальная (максимальная) концентрация горючего в окислителе, способная воспламениться от высокоэнергетического источника с последующим распространением горения на всю смесь.

Расчетные формулы

Нижний концентрационный предел распространения пламени φ н определяют по предельной теплоте сгорания. Установлено, что 1 м 3 различных газовоздушных смесей на НКПР выделяет при горении постоянное среднее количество тепла - 1830 кДж, называемое предельной теплотой горения. Следовательно,

если принять среднее значение Q пр. равным 1830 кДж/м 3 , то φ н 6удет равно

(2.1.2)

где Q н - низшая теплота сгорания горючего вещества, кДж/м 3 .

Нижний и верхний КПР пламени могут быть определены по аппроксимационной формуле

(2.1.3)

где n - стехиометрический коэффициент при кислороде в уравнении химической реакции; а и b эмпирические константы, значение которых приведены в табл. 2.1.1

Таблица 2.1.1.

Концентрационные пределы распространения пламени паров жидких и твердых веществ могут быть рассчитаны, если известны температурные пределы

(2.1.4)

где р н(е) - давление насыщенного пара вещества при температуре, соответствующей

нижнему (верхнему) пределу распространения пламени, Па;

p о -давление окружающей среды, Па.

Давление насыщенного пара может быть определено по уравнению Антуана или по табл. 13 приложения

(2.1.5)

где А, В, С - константы Антуана (табл. 7 приложения);

t - температура, 0 С, (температурные пределы)

Для расчета концентрационных пределов распространения пламени смесей горючих газов используют правило Ле-Шателье

(2.1.6)

где
нижний (верхний) КПР пламени смеси газов, % об.;

- нижний (верхний) предел распространения пламени i-ro горючего газа %, об.;

- мольная доля i-ro горючего газа в смеси.

Следует иметь при этом в виду, что ∑μ i =1, т.е. концентрация горючих компонентов газовой смеси принимается за 100%.

Если известны концентрационные пределы распространения пламени при температуре Т 1 , то при температуре Т 2 . они вычисляются по формулам

, (2.1.7)


, (2.1.8)

где
,
- нижний концентрационный предел распространения пламени соответственно при температурах

Т 2 . и Т 1 ;
и
- верхний концентрационный предел распространения пламени соответственно при температурах Т 1 и Т 2 ;

Т Г - температура горении смеси.

Приближенно при определении НКПР пламени Т г принимают 1550 К, при определении ВКПР пламени -1100К.

При разбавлении газовоздушной смеси инертными газами (N 2 , СО 2 Н 2 О пары и т.п.) область воспламенения сужается: верхний предел снижается, а нижний - возрастает. Концентрация инертного газа (флегматизатора), при которой нижний и верхний пределы распространения пламени смыкаются, называется минимальной флегматизирующей концентрацией φ ф . Содержание кислорода такой системе называют минимальным взрывоопасным содержанием кислорода МВСК. Некоторое содержание кислорода ниже МВСК называют безопасным
.

Расчет указанных параметров проводят по формулам

(2.1.9)

(2.1.10)

(2.1.11)

где
- стандартная теплота образования горючего, Дж/моль;

, ,- константы, зависящие от вида химического элемента в молекуле горючего и вида флегматизатора, табл. 14 приложения;

- количество атомов i-го элемента (структурной группы) в молекуле горючего.

Пример 1. По предельной теплоте сгорания определись нижний концентрационный предел воспламенения бутана в воздухе.

Решение. Для расчета по формуле (2.1.1) в табл. 15 приложения находим низшую теплоту сгорания вещества 2882,3 кДж/моль. Эту величину надо перевести в другую размерность - кДж/м 3:

кДж/м 3

По формуле (2.1.1) определим нижний концентрационный предел распространения пламени (НКПР)

По табл. 13 приложения находим, что экспериментальное значение
- 1,9%. Относительная ошибка расчета, следовательно, составила

.

Пример 2. Определить концентрационные пределы распространения пламени этилена в воздухе.

Расчёт КПР пламени проводим по аппроксимационной формуле. Определяем значение стехиометрического коэффициента при кислороде

С 3 Н 4 +3О 2 = 2СО 2 +2Н 2 О

Таким образом, n = 3, тогда

Определим относительную ошибку расчета. По табл. 13 приложения экспериментальные значения пределов составляют 3,0-32,0:


Следовательно, при расчете НКПР этилена результат завышен на 8%, а при расчете НКПР - занижен на 40%.

Пример 3. Определим, концентрационные пределы распространения пламени насыщенных паров метанола в воздухе, если известно, что его температурные пределы составляют 280 - 312 К. Атмосферное давление нормальное.

Для расчета по формуле (2.1.4) необходимо определить давление насыщенных паров, соответствующее нижнему (7°С) и верхнему (39 о С) пределам распространения пламени.

По уравнению Антуана (2.1.5) находим давление насыщенного пара, воспользовавшись данными табл.7 приложения.

Р Н =45,7 мм.рт.ст=45,7·133,2=6092,8 Па

Р Н =250 мм.рт.ст=250·133,2=33300 Па

По формуле (2.1.3) определим НКПР


Пример 4. Определить концентрационные пределы распространения пламени газовой смеси, состоящей 40% пропана, 50% бутана и 10% пропилена.

Для расчета КПР пламени смеси газов но правилу Ле-Шателье (2.1.6) необходимо определить КПР пламени индивидуальных горючих веществ, методы расчета которых рассмотрены выше.

С 3 Н 8 -2,1÷9,5%; С 3 Н 6 -2,2÷10,3%; С 4 Н 10 -1,9÷9,1%


Пример 5. Каково минимальное количество диэтилового эфира, кг, способное при испарении в ёмкости объёмом 350 м 3 сосдать взрывоопасную концетрацию.

Концентрация будет взрывоопасной, если φ н пг где (φ пг - концентрация паров горючего вещества). Расчетом (см. примеры 1-3 данного раздела) пли по табл. 5 приложения находим НКПР пламени диэтилового эфира. Он равен 1,7%.

Определим объем паров диэтилового эфира, необходимый для создания в объеме 350 м 3 этой концентрации

м 3

Таким образом, для создания НКПР диэтилового эфира о объеме 350 м 3 необходимо ввести 5,95 м 3 его паров. Принимая во внимание, что 1 кмоль (74 kг) пара, приведенный к нормальным условиям, занимает объем, равный 22,4 м 1 , находим количество диэтилового эфира

кг

Пример 6. Определить, возможно ли образование взрывоопасной концентрации в объеме 50 м 3 при испарении 1 кг гексана, если температура окружающей среды 300 К.

Очевидно, паровоздушная смесь будет взрывоопасной, если φ н ≤φ пг ≤φ в - При 300 К объем паров гексана, образующийся в результате испарения 5 кг вещества, найдем, принимая во внимание, что при испарении 1 кмоля (86 кг) гексана при 273 К объем паровой фазы будет равен 22,4 м 3

м 3

Концентрация паров гексана в помещении объёмом 50м 3 , следовательно, будет равна

Определив концентрационные пределы распространения пламени гексана в воздухе (1,2-7,5%), по таблицам или расчетом устанавливаем, что образующаяся смесь является взрывоопасной.

Пример 7. Определить, образуется ли взрывоопасная концентрация насыщенных паров над поверхностью резервуара, содержащего 60% диэтилового эфира (ДЭ) и 40% этилового спирта (ЭС), при температуре 245 К?

Концентрация паров будет взрывоопасной, если φ см н ≤φ см нп ≤φ см в (φ см нп - концентрации насыщенных паров смеси жидкостей).

Очевидно, что в результате различной летучести веществ состав газовой фазы будет отличаться от состава конденсированной фазы. Содержание компонентов в газовой фазе по известному составу жидкой определим по закону Рауля для идеальных растворов жидкостей.

1. Определим мольный состав жидкой фазы

,

где
- мольная доляi-го вещества;

- весовая доля i-го вещества;

- молекулярная масса i-го вещества; (М ДЭ =74, М ЭС =46)


2. По уравнению (2.1.5), используя значения табл.12 приложения. Находим давление насыщенного эфира и этилового спирта при температуре 19°С (245 К)

Р ДЭ =70,39 мм.рт.ст=382,6 Па

Р ЭС =2,87 мм.рт.ст=382,6 Па

3.Согласно закону Рауля, парциальное давление насыщенных паров i-й жидкости над смесью равно произведению давления насыщенного пара над чистой жидкостью на ее мольную долю в жидкой фазе, т.е.

Р ДЭ(пар ) =9384,4·0,479=4495,1 Па;

Р ЭС(пар) =382,6·0,521=199,3 Па.

4.Приняв сумму парциальных давлений насыщенных паров диэтилового эфира и этилового спирта равной 100%, определим

а) концентрацию паров в воздухе

б) мольный состав газовой фазы (закон Рауля-Дуартье)

5. Определив расчетом или по справочным данным (табл.16 приложения) КПР пламени индивидуальных веществ (диэтиловый эфир 1,7÷59%, этиловый спирт 3,6÷19%). по правилу Ле-Шагелье рассчитаем КПР пламени паровой фазы


6. Сравнивая полученные в п.4,а концентрацию паровоздушной смеси с концентрационными пределами распространения пламени (1,7-46,1%), делаем заключение, что при 245 К над данной жидкой фазой образуется взрывоопасная концентрация насыщенных паров в воздухе.

По табл.15 приложения находим теплоту образования ацетона 248,1·10 3 Дж/моль. Из химической формулы ацетона (С3Н 6 О) следует, что т с = 3, т н = 6, т о = 1. Значения остальных параметров, необходимые для расчета по формуле (2.8), выбираем из табл. 11 для двуокиси углерода

Следовательно, при снижении концентрации кислорода в четырехкомпонентной системе, состоящей из паров ацетона, двуокиси углерода, азота и кислорода, до 8,6% смесь становится взрывобезопасной. При содержании же кислорода, равном 10,7% эта смесь будет предельной по взрываемости. Согласно справочным данным (справочник "Пожарная опасность веществ и материалов, применяемых в химической промышленности". - М, Химия, 1979), МВСК ацетоновоздушной смеси при разбавлении ее двуокисью углерода составляет 14,9%. Определим относительную ошибку расчета

Таким образом, результаты расчета МВСК занижены на 28%.

Задание на самостоятельную работу

Вещество жидкость

Вещество газ

Амилбензол

Ацетилен

Н-Амиловый спирт

Окись углерода

Бутилацетат

Бутиловый спирт

Сероводород

Диэтиловый эфир

Ацетилен

Уайт-спирит

Этиленгликоль

Окись углерода

Трет-Амиловый спирт

Метиловый спирт

Сероводород

Амилметилкетон

Бутилбензол

Бутилвиниловый эфир

Окись углерода

Ацетилен

Этиловый спирт

Ацетилен

Бутиловый спирт

Окись углерода

Область значений графика зависимости КПРП в системе "горючий газ - окислитель", соответствующая способности смеси к воспламенению образует область воспламенения .

На значения НКПРП и ВКПРП оказывают влияние следующие факторы:

  • Свойства реагирующих веществ;
  • Давление (обычно повышение давления не сказывается на НКПРП, но ВКПРП может сильно возрастать);
  • Температура (повышение температуры расширяет КПРП за счет увеличения энергии активации);
  • Негорючие добавки - флегматизаторы;

Размерность КПРП может выражаться в объемных процентах или в г/м³.

Внесение в смесь флегматизатора понижает значение ВКПРП практически пропорционально его концентрации вплоть до точки флегматизации, где верхний и нижний пределы совпадают. НКПРП при этом повышается незначительно. Для оценки способности к воспламенению системы "Горючее+Окислитель+Флегматизатор" строят т.н. пожарный треугольник - диаграмму, где каждой вершине треугольника соответствует стопроцентное содержание одного из веществ, убывающее к противолежащей стороне. Внутри треугольника выделяют область воспламенения системы. В пожарном треугольнике отмечают линию минимальной концентрации кислорода (МКК), соответствующей такому значению содержания окислителя в системе, ниже которого смесь не воспламеняется. Оценка и контроль МКК важна для систем, работающих под вакуумом , где возможен подсос через неплотности технологического оборудования атмосферного воздуха.

В отношении жидких сред применимы также температурные пределы распространения пламени (ТПРП) - такие температуры жидкости и ее паров в среде окислителя, при которых ее насыщенные пары образуют концентрации, соответствующие КПРП.

КПРП определяют расчетным путем или находят экспериментально.

Применяется при категорировании помещений и зданий по взрывопожарной и пожарной опасности, для анализа риска аварии и оценки возможного ущерба, при разработке мер по предотвращению пожаров и взрывов в технологическом оборудовании.

См. также

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "" в других словарях:

    нижний концентрационный предел распространения пламени - НКПР Концентрация горючего газа или пара в воздухе, ниже которой взрывоопасная газовая среда не образуется. [ГОСТ Р МЭК 60050 426 2006] Тематики взрывозащита Синонимы НКПР EN LELlower explosive limit …

    нижний концентрационный предел распространения пламени - 3.1.6 нижний концентрационный предел распространения пламени (воспламенения) (lower explosive limit, LEL); НКПР, %: Объемная доля горючего газа или пара в воздухе, ниже которой не образуется взрывоопасная газовая среда. Источник …

    нижний концентрационный предел распространения пламени (воспламенения) (НКПР) - 2.10.1 нижний концентрационный предел распространения пламени (воспламенения) (НКПР): Минимальное содержание горючего газа или пара в воздухе, при котором возможно распространение пламени по смеси на любое расстояние от источника. Источник: ГОСТ… … Словарь-справочник терминов нормативно-технической документации

    нижний концентрационный предел распространения пламени (НКПР) - 2.1.6 нижний концентрационный предел распространения пламени (НКПР): По ГОСТ 12.1.044. Источник … Словарь-справочник терминов нормативно-технической документации

    нижний концентрационный предел распространения пламени, НКПР - 3.12 нижний концентрационный предел распространения пламени, НКПР (lower explosive limit, LEL): Концентрация горючего газа или пара в воздухе, ниже которой взрывоопасная газовая среда не образуется, выражается в процентах (см. МЭК 60079 20 1 ) … Словарь-справочник терминов нормативно-технической документации

    нижний концентрационный предел распространения пламени НКПР Электротехнический словарь

    НКПР (нижний концентрационный предел распространения пламени) - 3.37 НКПР (нижний концентрационный предел распространения пламени) : По ГОСТ 12.1.044. Источник … Словарь-справочник терминов нормативно-технической документации

    НКПР нижний концентрационный предел распространения пламени - lower explosive limit, LEL Концентрация горючего газа или пара в воздухе, ниже которой взрывоопасная газовая среда не образуется … Электротехнический словарь

    нижний (верхний) концентрационный предел распространения пламени - Минимальное (максимальное) содержание горючего вещества в однородной смеси с окислительной средой, при котором возможно распространение пламени по смеси на любое расстояние от источника зажигания. [ГОСТ 12.1.044 89] Тематики пожарная безопасность … Справочник технического переводчика

    нижний концентрационный предел распространения (НКПР) пламени (воспламенения) - 3.5 нижний концентрационный предел распространения (НКПР) пламени (воспламенения): Минимальное содержание горючего вещества в однородной смеси с окислительной средой (НКПР, % об.), при котором возможно распространение пламени по смеси на любое… … Словарь-справочник терминов нормативно-технической документации

Для всех вредных веществ, известных в настоящее время, установлена максимальная концентрация, при которой не происходит никакого вредного воздействия на организм человека (ГОСТ 12.1.005-88), такая концентрация называется предельно-допустимой концентрацией (ПДК).

ПДК - это концентрация, которая при ежедневной (кроме выходных дней) работе в течение 8 ч или при другой продолжительности, но не более 40 ч в неделю, в течение всего рабочего стажа не может вызвать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений.

ПДК имеет огромное значение для профилактики отравлений и заболеваний. Чем меньше ПДК, тем более серьезные требования должны предъявляться к мерам защиты работающих.

В зависимости от значений ПДК и ряда других показателей определяется степень воздействия вредных веществ на организм человека.

Горючие газы и пары ЛВЖ способны образовывать в смеси с кислородом воздуха взрывчатые смеси.

Наименьшая концентрация горючих паров и газов, при которой уже возможен взрыв, называется нижним концентрационным пределом распространения пламени НКПР (НКПР – это минимальное содержание горючего в смеси «горючее вещество – окислительная среда», при котором возможно распространение пламени по смеси на любое расстояние от источника зажигания).

Наибольшая концентрация горючих паров и газов, при которой еще возможен взрыв, называется верхним концентрационным пределом распространения пламени ВКПР (ВКПР – это максимальное содержание горючего в смеси «горючее вещество – окислительная среда», при котором возможно распространение пламени по смеси на любое расстояние от источника зажигания).

Концентрация от НКПР до ВКПР называется диапазоном взрываемости. При концентрации ниже НКПР или выше ВКПР взрыва не происходит, в первом случае из-за низкого содержания паров или газов, во втором - из-за недостаточного содержания кислорода.

Каждое вещество имеет свои значения НКПР и ВКПР, т. е. диапазон взрываемости у каждого вещества свой собственный.

Нефть – это вещество сложное (многокомпонентное), причем состав различных нефтей отличается друг от друга, поэтому диапазон взрываемости у разных нефтей разный, о чем свидетельствуют данные таблицы 3, в которой указаны НКПР для различных нефтей. Поэтому, для того чтобы не вносить в этом вопросе путаницу, для всех нефтей принят единый (усредненный) диапазон взрываемости (см. таблицу 4).

С целью обеспечения взрывопожаробезопасности, для всех веществ установлена предельно-допустимая взрывобезопасная концентрация ПДВК, она составляет 5% величины нижнего концентрационного предела распространения пламени. ПДВК имеет большое значение при оценке степени риска при проведении различного вида работ, связанных с выделением горючих паров и газов.

Расчет концентрационных пределов распространения пламени

1. Расчет концентрационных пределов распространения пламени аппроксимационным методом проводят по формуле:

100 / (аb + в), (5.6)

где j - нижний или верхний концентрационный предел распространения пламени, об.%;

b - стехиометрический коэффициент кислорода, равный числу молей кислорода, приходящихся на 1 моль горючего вещества при его полном сгорании;

а, в - универсальные константы:

для нижнего предела а = 8,684; в = 4,679;

для верхнего предела при b Ј 7,5 а = 1,559; в = 0,560

при b > 7,5 а = 0,768; в = 6,554.

Величину b определяют по уравнению реакции или по формуле:

b = m c + m s + 0,25 (m H - m x) + 0,5 m o + 2,5 m p , (5.7)

где m c , m s , m H , m x , m o , m p - число атомов соответственно углерода, серы, водорода, галогена, кислорода и фосфора в молекуле горючего вещества.

Погрешность расчета по аппроксимационному методу составляет: при вычислении нижнего предела 12 %, при вычислении верхнего предела 12 % при b Ј 7,5 и 40 % при b > 7,5.

При проведении процесса с горючим веществом при параметрах окружающей среды, отличных от стандартных условий (t = 25 о С, Р = 760 мм рт.ст.), нижний (верхний) пределы рассчитывают по формулам:

j н t = j н 25 , (5.8)

j в t = j в 25 . (5.9)

Повышение давления (Р) по отношению к атмосферному сказывается в основном на величине верхнего концентрационного предела, который рассчитывается по формуле:

j в Р = (100 j в атм Ц Р) / (100 - j в атм + j в атм Ц Р), (5.10)

где j в Р и j в атм - верхние концентрационные пределы при давлении Р и нормальном атмосферном, соответственно, атм.

  • 2. Расчет концентрационных пределов распространения пламени методом, принятым ГОСТом 12.1.044-89 .
  • 2.1. Расчет нижнего предела распространения пламени индивидуальных веществ в объемных процентах при температуре 25оС :

н = 1100/h s m s , (5.11)

где h s - коэффициент s группы, влияющей на нижний предел распространения пламени, значения которых привед...

Вещества и материалы, способные взрываться и гореть при взаимодействии с водой, кислородом воздуха или друг с другом в таком количестве, что расчетное избыточное давление взрыва в помещении превышает 5 кПа

Б- взрывопожаро-опасная

Пыли и волокна, ЛВЖ с температурой вспышки более 28 о С, горючие жидкости (ГЖ) в таком количестве, что могут образовывать взрывоопасные паровоздушные или пылевоздушные смеси, при воспламенении которых развивается избыточное давление взрыва в помещении, превышающее 5 кПа

пожароопас-ные

Горючие и трудногорючие жидкости, твердые горючие и трудногорючие вещества и материалы (в том числе пыли и волокна), вещества материалы, способные при взаимодействии с водой, кислородом воздуха и друг с другом только гореть, при условии, что помещения, в которых они имеются в наличии или обращаются, не относятся к категориям А или Б

невзрывопо-жароопасная

Негорючие вещества и материалы в горячем, раскаленном или расплавленном состоянии, процесс обработки которых сопровождается выделением лучистого тепла, искр и пламени; горючие газы, жидкости и твердые вещества, которые сжигаются или утилизируются в качестве топлива

непожаро-опасная

Негорючие вещества и материалы в холодном состоянии

Пожар легче предупредить, чем его тушить. На этом принципе базируется пожарная профилактика, где заранее предусматриваются мероприятия направленные:

на устранение источников зажигания, окислителя и т.д.;

предупреждение возможности возникновения очага пожара (замена горючих веществ на негорючие, понижение степени горючести веществ, работа с безопасными концентрациями, температурами и т.п.);

предупреждение распространения пожара при его возникновении внутри оборудования и по трубопроводам, по конструктивным элементам зданий, между зданиями и т.д. (огнепреградители, отсекающие клапаны, резервные емкости, противопожарные стены, зоны, обваловки и т.п.);

безопасная эвакуация людей при пожаре;

первичные и стационарные средства тушения пожара.

Задания и порядок выполнения работы

Задание № 1. Определение нижнего (н) и верхнего (в) концентрационных пределов распространения пламени.

Определить степень взрывопожароопасности смеси горючих газов (по заданию преподавателя) на экспериментальной установке по величине нижнего (н) и/или верхнего (в) пределов распространения пламени. Полученные результаты сравнить с расчетными и найти погрешность определения. Определить безопасные концентрации. Установить, к какому классу по ПУЭ относится зона вокруг экспериментальной установки, где установлен баллон с заданной смесью газов, и к какой категории по взрывопожароопасности относится помещение, в котором эта смесь используется: 1) как сырье; 2) как топливо.

Порядок выполнения работы

  • 1. Познакомиться с экспериментальной установкой и порядком выполнения работы на ней (см. описание к установке).
  • 2. Провести предварительные расчеты нижнего (верхнего) концентрационных пределов распространения пламени сначала для индивидуальных веществ [см. уравнения (5.6) или (5.115.13)] , а затем для смеси газов [см. уравнение (5.15)], указанного в задании состава.
  • 3. Рассчитать объем газовой смеси, необходимой для создания концентрации, соответствующей нижнему (верхнему) пределу по формуле (5.16).
  • 4. Приготовить газовоздушную смесь путем смешения воздуха с рассчитанным объемом газовой смеси в смесительной системе установки.
  • 5. Отобрать часть приготовленной смеси во взрывной цилиндр и поджечь ее искровым разрядом.
  • 6. При наличии взрыва при определении нижнего предела (н) уменьшить объем, а при определении верхнего (в) наоборот увеличить объем отбираемого газа на 1 мл.
  • 7. Удалить из смесительной системы и взрывного цилиндра установки продукты сгорания и повторить эксперимент с меньшим (большим) объемом отобранного газа. Эксперимент проводить до тех пор, пока при следующем уменьшении (увеличении) объема газа взрыва не будет.
  • 8. Рассчитать экспериментальную величину нижнего (верхнего) пределов распространения пламени и найти погрешность между рассчитанным и экспериментальным значением. Объяснить различия экспериментальной и расчетной величины.
  • 9. При оценке степени опасности смеси газов с воздухом учитывают, что все газовоздушные смеси, имеющие область воспламенения, ограниченную нижним и верхним концентрационными пределами, взрывопожароопасны, но смеси с н 10 об.% - особовзрывоопасные, а с н 10 об.% - взрывоопасные.
  • 10. Установить класс зоны по ПУЭ вокруг баллона с газовой смесью заданного состава.
  • 11. Обосновать категорию помещения, в котором эта газовая смесь используется в качестве: а) сырья; б) топлива.
  • 12. Экспериментальные результаты можно представить в виде табл.5.11:

Таблица 5.11.

Задание № 2. Определение температуры вспышки и воспламенения.

Оценить степень взрывопожароопасности жидкости (по заданию преподавателя) по температурам вспышки и воспламенения. Экспериментально установленные температуры сравнить с расчетными и справочными величинами, определить погрешности и в случае расхождения объяснить различия.

Установить класс зоны по ПУЭ и категорию помещения по НПБ105-95, где используется исследуемая жидкость. Предложить методы обеспечения пожарной безопасности.

Порядок выполнения работы

  • 1. Ознакомиться с установкой закрытого (открытого) типа для определения температуры вспышки (t всп.) и воспламенения (t восп.).
  • 2. Рассчитать и/или найти в справочнике температуру вспышки для исследуемой жидкости.
  • 3. Заполнить тигель в установке на 2/3 исследуемой жидкостью, установить термометр необходимого диапазона и включить нагревательное устройство.
  • 4. Зажечь и отрегулировать запальный фитилек с помощью зажима на шланге с газом от газового баллона.
  • 5. За 1015 о С до расчетной величины t всп. (или взятой из справочника) через каждые 12 градуса подносить запальный фитилек к поверхности жидкости и зафиксировать температуру, при которой впервые пары над жидкостью вспыхнут. Это будет экспериментальная температура вспышки - t всп э.
  • 6. Продолжить нагрев жидкости и поднесение запального фитилька через каждые 12 градуса нагрева к поверхности жидкости. Зафиксировать температуру, при которой пары загорелись и горение продолжалось не менее 1530 с. Это будет экспериментальная температура воспламенения - t восп э.
  • 7. Закрыть емкость с горящей жидкостью крышкой, если измерения проводятся на установке открытого типа, или закрыть задвижку на приборе закрытого типа, чтобы горение прекратилось.
  • 8. Экспериментальные показатели сравнить с расчетными (справочными) и объяснить расхождения в значениях температур.
  • 9. По найденной температуре установить степень опасности жидкости. Наиболее опасными являются ЛВЖ, к которым относятся жидкости с t всп. 61 о С (на приборе закрытого типа) и 66 о С (на приборе открытого типа). Все ЛВЖ взрывопожароопасны. Если t всп. 61(66) о С - это пожароопасная горючая жидкость (ГЖ).
  • 10. По разности между t восп - t всп = t установить опасность жидкости при эксплуатации в условиях возможного наличия источника зажигания. Чем меньше t, тем опаснее жидкость.
  • 11. Установить класс зоны по ПУЭ вокруг оборудования, в котором используется исследуемая жидкость.
  • 12. Установить категорию помещения по НПБ105-95 , в котором используется оборудование с жидкостью.
  • 13. Предложить методы обеспечения пожарной безопасности при использовании исследуемой жидкости.

Экспериментальные результаты можно представить в виде табл.5.12.

Таблица 5.12

Задание № 3. Определение температуры самовоспламенения методом капли.

Оценить степень взрывопожароопасности жидкости (по заданию преподавателя) по температуре самовоспламенения (t св.). Полученные результаты сравнить с расчетными и справочными данными. Найти погрешность и объяснить возможные расхождения в величинах t св.

Установить группу взрывоопасной смеси и температурный класс взрывозащищенного электрооборудования. Найти безопасную температуру нагрева исследуемой жидкости. Предложить мероприятия по обеспечению пожарной безопасности при работе с исследуемой жидкостью.

Порядок выполнения работы

  • 1. Ознакомиться с установкой по определению температуры самовоспламенения методом капли.
  • 2. Рассчитать объем исследуемой жидкости, соответствующей стехиометрическому составу смеси по формуле (5.21).
  • 3. Рассчитать и/или взять из справочника температуру исследуемой жидкости.
  • 4. Включить муфельную печь, отрегулировать потенциометр, показывающий температуру нагрева сосуда и проверить наличие зеркальца над сосудом.
  • 5. Нагреть сосуд до температуры на 3040 о С выше расчетной (справочной) температуры самовоспламенения исследуемой жидкости и отключить печь.
  • 6. За 1015 о С до расчетной (справочной) t св. через каждые 23 градуса падения температуры вводить в сосуд рассчитанный объем жидкости и через зеркальце фиксировать загорание паров жидкости.
  • 7. С помощью секундомера фиксировать время с момента внесения жидкости в сосуд до воспламенения паров жидкости. Это время по мере остывания сосуда увеличивается.
  • 8. После каждого опыта продукты сгорания удалять из сосуда с помощью специального приспособления.
  • 9. Опыты повторять до тех пор, пока пары внесенной жидкости не будут воспламеняться в течение 35 мин.
  • 10. За экспериментальную температуру самовоспламенения исследуемой жидкости принимается температура, при которой в последний раз было зафиксировано воспламенение паров вносимой в установку жидкости.
  • 11. Сравнить полученную t св. э с расчетной (t св. р) и справочной (t св. сп), объяснить наблюдаемые расхождения и установить погрешность определения.
  • 12. Степень опасности жидкости устанавливают путем нахождения по t св. группы взрывоопасной смеси. Самой опасной будет жидкость, относящаяся к группе Т6, а наименее опасной к группе Т1. Группы взрывоопасных смесей и температурные классы взрывозащищеного электрооборудования приведены в литературе и в разделе 5.1 (табл. 5.1 и 5.2).
  • 13. Найти безопасную температуру нагрева жидкости, определяемую по формуле (5.2).
  • 15. Экспериментальные результаты могут быть представлены в виде табл. 5.13.

Таблица 5.13.

Задание № 4. Определение безопасного экспериментального максимального зазора (БЭМЗ).

Оценить степень взрывопожароопасности паро-воздушной смеси (по заданию преподавателя) по величине БЭМЗ, определенном на модельной установке. Полученные результаты сравнить с расчетными и/или справочными и объяснить наблюдаемые расхождения. Рассчитать погрешность определения относительно расчетной величины. Предложить меры пожарной безопасности при использовании исследуемой жидкости.

Порядок выполнения работы

  • 1. Ознакомиться с модельной установкой по определению БЭМЗ.
  • 2. Рассчитать объем жидкости, необходимый для создания паровоздушной смеси стехиометрического состава по формуле (5.20).
  • 3. Рассчитать величину БЭМЗ по формуле (5.16) и установить с помощью шкалы этот зазор на установке. Точность установки зазора 0,05 мм.
  • 4. Включить установку и открыть защитный кожух.
  • 5. Внести в левую и правую камеры рассчитанный объем исследуемой жидкости и закрыть отверстие, через которое вводилась жидкость (калькой).
  • 6. Закрыть кожух и выждать время, необходимое для испарения введенной жидкости и образования паровоздушной смеси стехиометрического состава (время зависит от летучести жидкости и указывается преподавателем).
  • 7. Путем нажатия кнопок на передней панели установки поджечь паро-воздушную смесь с помощью электрической искры сначала в левой камере, а затем в правой.
  • 8. При фиксировании взрывов в обеих камерах отметить отсутствие передачи взрыва из одной камеры в другую.
  • 9. После этого установить зазор на 0,05 мм больше предыдущего.
  • 10. Удалить продукты сгорания с помощью вентиляционной системы, вмонтированной в установку, путем нажатия педали на передней панели установки. Полнота удаления фиксируется отсутствием запаха исследуемой жидкости из отверстий, через которые происходит удаление загрязненного воздуха.
  • 11. Опыты повторять, меняя зазор, до тех пор, пока при подаче искры в одну из камер будет фиксироваться взрыв, а при подаче искры в другую камеру взрыва не будет. Это указывает на то, что зазор между камерами больше БЭМЗ и при взрыве смеси в одной камере через этот зазор происходит одновременно взрыв в другой камере, следовательно, наблюдается передача взрыва. За экспериментальную величину БЭМЗ принять то значение зазора, при котором в последний раз фиксировали отсутствие передачи взрыва из одной камеры в другую.
  • 12. Сравнить полученную величину БЭМЗ с расчетной и справочной. Рассчитать погрешность определения по отношению к расчетной (справочной) величине. Объяснить возможные расхождения в показателях.
  • 13. Оценка степени взрывопожароопасности жидкости по величине БЭМЗ проводится путем нахождения категории взрывоопасной смеси по ПУЭ. Самая опасная будет смесь, относящаяся к категории IIС и наименее опасная - к категории IIА (см. табл.5.3).
  • 14. Предложить мероприятия по обеспечению пожарной безопасности при работе с исследуемой жидкостью.
  • 15. Экспериментальные результаты могут быть представлены в виде табл. 5.14.

Таблица 5.14.

КОНТРОЛЬНЫЕ ВОПРОСЫ

  • 1. Общие сведения о пожаре и горении. Механизмы процесса горения.
  • 2. Основные показатели взрывопожароопасности веществ и материалов (температура вспышки-t всп. , температура воспламенения-t восп. , температура самовоспламенения-t св. , нижний (н) и верхний (в) концентрационные пределы распространения пламени, безопасный экспериментальный максимальный зазор - БЭМЗ и др.).
  • 3. Оценка степени взрывопожароопасности веществ и материалов на основе t всп. , t восп. , t св. , н, в, БЭМЗ и других показателей.
  • 4. Оценка степени взрывопожароопасности зон вокруг оборудования, где используются горючие вещества.
  • 5. Оценка степени взрывопожароопасности помещений по НПБ 105-95.
  • 6. Порядок назначений взрывопожароопасных категорий помещений (категорий А и Б).
  • 7. Порядок назначения пожароопасной категории (В1-В4) и оценка степени пожарной опасности помещений.
  • 8. Мероприятия по предупреждению возникновения очага пожара (снижения степени горючести веществ, устранения окислителя и источника зажигания).
  • 9. Мероприятия по предупреждению распространения очага пожара при его возникновении внутри технологического оборудования (огнепреградители, вентили, мембраны и др.).
  • 10. Мероприятия по предупреждению распространения пожара по конструктивным элементам здания и против разрушения здания при взрыве (противопожарные стены, перекрытия, обваловки, легкосбрасываемые конструкции и др.).
  • 11. Мероприятия по обеспечению безопасности эвакуации людей при пожаре.
  • 12. Мероприятия, направленные на тушение пожара: специализированные службы, средства сигнализации о пожаре, стационарные и первичные средства пожаротушения.

2.1 Природный газ - продукт, добываемый из недр земли, состоит из метана (96 – 99%), углеводородов (этан, бутан, пропан и др.), азота, кислорода, углекислоты, водяного пара, гелия. На ИвТЭЦ-3 природный газ поступает в качестве топлива по газопроводу из Тюмени.

Удельный вес природного газа - 0,76 кг/м 3 , удельная теплота сгорания – 8000 - 10000 ккал/м 3 (32 - 41 МДж/м 3), температура горения – 2080 °С, температура воспламенения – 750 °С.

Горючий природный газ по токсикологической характеристике относится к веществам 4 класса опасности ("малоопасным") в соответствии с ГОСТ 12.1.044-84.

2.2 Предельно допустимая концентрация (ПДК) углеводородов природного газа в воздухе рабочей зоны равна 300 мг/м 3 в пересчете на углерод, ПДК сероводорода в воздухе рабочей зоны 10 мг/м 3 , сероводорода в смеси с углеводородами С 1 – С 5 - 3 мг/м 3 .

2.3 Правила техники безопасности при эксплуатации газового хозяйства обуславливают следующие опасные свойства газообразного топлива:

а/ отсутствие запаха и цвета

б/ способность газа образовывать с воздухом пожаровзрывоопасные смеси

в/ удушающая способность газа.

2.4 Допустимая концентрация газа в воздухе рабочей зоны, в газопроводе при выполнении газоопасных работ - не более 20 % от нижнего концентрационного предела распространения пламени (НКПР):

3 Правила отбора проб газа на анализ

3.1 Курение и использование открытого огня в газоопасных местах, при проверке загазованности производственных помещений категорически запрещается.

3.2 Обувь работников, производящих замеры загазованности и находящихся в газоопасных местах, не должна иметь металлических подков и гвоздей.

3.3 При выполнении газоопасных работ следует использовать переносные светильники во взрывозащищенном исполнении напряжением 12 Вольт

3.4 Перед выполнением анализа необходимо осмотреть газоанализатор. Не допускаются к применению средства измерения, у которых просрочен срок поверки или имеются повреждения.

3.5 Перед тем, как войти в помещение ГРП, необходимо: убедиться в том, что аварийная сигнальная лампа «ЗАГАЗОВАНО» при входе в помещение ГРП не горит. Сигнальная лампа включается при достижении концентрации метана в воздухе помещений ГРП равной или выше 20% нижнего концентрационного предела распространения пламени, т.е. равной или выше об. 1%.

3.6 Отбор проб газа в помещениях (в ГРП) производится переносным газоанализатором из верхней зоны помещениявнаиболее плохо вентилируемых зонах, т.к. природный газ легче воздуха.

Действия в случае загазованности указаны в п. 6.

3.7 При отборе проб воздуха из колодца подходить к нему нужно с наветренной стороны, убедившись, что вблизи нет запаха газа. Одна сторона крышки колодца должна быть приподнята специальным крюком на 5 - 8 см, под крышку подложена деревянная прокладка на время отбора проб. Отбор пробы производится с помощью шланга, опущенного на глубину 20 - 30 см и соединенного с переносным газоанализатором, или в газовую пипетку.

При обнаружении газа в колодце его проветривают в течение 15 мин. и повторяют анализ.

3.8 Не допускается для отбора проб спускаться в колодцы и другие подземные сооружения.

3.9 В воздухе рабочей зоны содержание природного газа должно быть не более 20 % от нижнего концентрационного предела распространения пламени (1 % по метану); концентрация кислорода должна быть не ниже 20 % по объему.