Все о тюнинге авто

Выбор защитной и коммутационной аппаратуры. Расчет номинального тока. Квалификационные группы по электробезопасности Порядок наложения и снятия заземления

Выбор коммутационных аппаратов и аппаратов защиты к электроприемникам производится, исходя из номинальных данных последних и параметров питающей их сети, требований в отношении защиты приемников и сети от ненормальных режимов, эксплуатационных требований, в частности частоты включений и условий среды в месте установки аппаратов.

Конструкция всех электрических аппаратов рассчитывается и маркируется заводами-изготовителями на определенные для каждого аппарата значения напряжения, тока и мощности, а также для определенного режима работы. Таким образом, выбор аппаратуры по всем этим признакам сводится, по существу, к отысканию на основании данных каталогов соответствующих типов и величин аппаратов.

При выборе аппаратов защиты следует иметь в виду возможность следующих ненормальных режимов:

1) Междуфазные короткие замыкания.

2) Замыкания фазы на корпус.

3) Увеличение тока, вызванное перегрузкой технологического оборудования, а иногда неполным коротким замыканием.

4) Исчезновение или чрезмерное понижение напряжения.

Защита от токов короткого замыкания должна выполняться для всех электроприемников. Она должна действовать с минимальным временем отключения и должна быть отстроена от пусковых токов.

Защита от перегрузки необходима для всех электроприемников с продолжительным режимом работы, за исключением следующих случаев:

1) Когда перегрузка электроприемников по технологическим причинам не может иметь места или маловероятна (центробежные насосы, вентиляторы и т. п.).

2) Для электродвигателей мощностью менее 1 кВт.

Защита от перегрузки необязательна для электродвигателей, работающих в кратковременном или повторно-кратковременном режимах. Во взрывоопасных помещениях защита электроприемников от перегрузки обязательна во всех случаях. Защита минимального напряжения должна устанавливаться в следующих случаях:

Для электродвигателей, которые не допускают включения в сеть при полном напряжении;

Для электродвигателей, самопуск которых недопустим по технологическим причинам или представляет опасность для обслуживающего персонала;

Для прочих электродвигателей, отключение которых при прекращении питания необходимо для того, чтобы понизить до допустимой величины суммарную пусковую мощность подключенных к сети электроприемников.

Ток короткого замыкания должен отключаться мгновенно или почти мгновенно. Величина его в различных участках сети может быть весьма различна, но практически всегда можно считать, что аппараты защиты должны уверенно и быстро отключать любой ток, существенно больший пускового, и вместе с тем ни в коем случае не срабатывать при нормальном пуске.

Током перегрузки является любой ток, превышающий номинальный ток электродвигателя, но нет никаких оснований требовать отключения электродвигателя при каждом возникновении перегрузки.

Известно, что определенная перегрузка как электродвигателей, так и питающих их сетей, допустима, и что чем кратковременней перегрузка, тем больше может быть ее величина. Отсюда ясны преимущества для защиты от перегрузки таких аппаратов, которые имеют «зависимую характеристику», т. е. время срабатывания которых уменьшается с увеличением кратности перегрузки.

Поскольку, за очень редкими исключениями, аппарат защиты остается в цепи электродвигателя и при пуске, он не должен срабатывать при пусковом токе нормальной продолжительности.

Для защиты от токов короткого замыкания должен применяться безынерционный аппарат, настроенный на ток, существенно больший пускового, а для защиты от перегрузок, наоборот, инерционный аппарат с зависимой характеристикой, выбранный так, чтобы он не срабатывал за время пуска. В наибольшей степени этим условиям удовлетворяет комбинированный расцепитель, сочетающий в себе тепловую защиту от перегрузки и мгновенное электромагнитное отключение при токе короткого замыкания.

Один только аппарат мгновенного действия, настроенный на ток, больший пускового, защиты от перегрузок не обеспечивает. Напротив, один только инерционный аппарат с зависимой характеристикой, при большой кратности перегрузки срабатывающий почти мгновенно, может осуществить оба вида защиты, если только он способен отстроиться от пусковых токов, т. е. если время его срабатывания при пуске больше продолжительности последнего.

Плавкие предохранители, широко применявшиеся ранее в качестве защитных аппаратов, обладают рядом недостатков, основными из которых являются:

Ограниченная возможность применения для защиты от перегрузки, вследствие трудности отстройки от пусковых токов;

Недостаточная в ряде случаев предельная отключаемая мощность;

Продолжение работы электродвигателя на двух фазах при перегорании вставки в третьей фазе, что часто приводит к повреждению обмоток электродвигателя;

Отсутствие возможности быстрого восстановления питания;

Возможность применения эксплуатационным персоналом некалиброванных вставок;

Развитие аварии при некоторых типах предохранителей, вследствие переброски дуги на соседние фазы,

Довольно большой разброс время-токовых характеристик даже у однородных изделий.

Воздушные автоматы по сравнению с предохранителями являются более совершенными аппаратами зашиты, но обладают неизбирательностью действия, особенно при нерегулируемых токах отсечки у установочных автомагов, у универсальных автоматов хотя и имеется возможность избирательности, но осуществляется она сложным путем.

Следует отметить, что у установочных автоматов защита от перегрузки осуществляется тепловыми расцепителями. Эти расцепители менее чувствительны, чем тепловые реле магнитных пускателей, но зато устанавливаются в трех фазах.

В универсальных автоматах зашита от перегрузки является еще более грубой, поскольку в них имеются только одни электромагнитные расцепители. Вместе с тем, в универсальных автоматах имеется возможность осуществить защиту минимального напряжения.

Магнитные пускатели с помощью встраиваемых в них тепловых реле осуществляют чувствительную защиту от перегрузки в двух фазах, но, вследствие большой тепловой инерции реле, не обеспечивают защиты от коротких замыканий. Наличие в пускателях удерживающей катушки позволяет осуществить защиту минимального напряжения.

Защиту от перегрузки и коротких замыканий могут осуществлять токовые электромагнитные и индукционные реле, но они также могут действовать только через отключающий аппарат, и схемы с их применением получаются более сложными.

С учетом сказанного выше и совокупности требований, предъявляемых к аппаратам управления и защиты:

1) Для электродвигателей мощностью до 55 кВт, требующих защиты от перегрузки, наиболее употребительными аппаратами являются магнитные пускатели в комбинации с плавкими предохранителями или воздушными автоматами.

2)При мощности электродвигателей более 55 кВт применяются электромагнитные контакторы в комбинации с защитными реле или воздушными автоматами. При этом следует помнить, что контакторы не допускают разрыва цепи при коротких замыканиях.

Номинальный ток двигателя:

Iн = , А (8) где Iн - номинальный ток двигателя, А;

Рдв - мощность двигателя, кВт;

Переводной коэффициент;

Uн - номинальное напряжение, В;

Коэффициент полезного действия.

Выбираем автоматический выключатель с электромагнитным приводом.

Выбираем трансформатор тока.

Трансформатор тока предназначен для понижения первичного тока до стандартной величины (5 или 1 А) и для определения цепей измерения и защиты от первичных цепей высокого напряжения.

Таблица 4. Технические данные автоматического воздушного выключателя серии А3730Ф


Таблица 5. Технические данные трансформатора тока серии ТКЛ


Трансформаторы тока изготовляются на следующие номинальные токи: 5, 10, 15, 20, 30, 40, 50, 75, 100, 150, 200, 300, 400, 600, 800, 1000, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10 000 и 15 000 А

Окончательно выбираем трансформатор тока ТКЛ - 0,5 - трансформатор тока катушечный с изоляцией из литой синтетической смолы.

Выбираем трансформатор напряжения.

Трансформатор напряжения предназначен для преобразования больших переменных напряжений в относительно малые напряжения.


Окончательно выбираем трансформатор напряжения НОС - 0,5.

Измерительный трансформатор напряжения однофазный сухой.

Расчет и выбор кабелей и проводов

Выбираем кабель по экономической плотности тока.

Условия выбора сечения проводников:

где Fэк - сечение проводника, мм2;

Iр. мах - расчетный максимальный ток нормального режима, А;

jэк - экономическая плотность тока, А/мм2.

Экономическая плотность тока зависит от материала проводника и величины Tmax. Так как Tmax = 5000 ч выбираем jэк = 1,7 А/мм2.

Выбираем кабель АВВГ - (4Ч95)

Четырехжильный кабель с алюминиевыми жилами, резиновой изоляцией, ПВХ оболочкой и броней.

Проверяем кабель по потерям напряжения:

ДU - переводной коэффициент;

Iр - ток ротора, А;

Длина линии, км;

r0 = 0,89 Ом/км - удельное активное сопротивление кабеля на 1 км длины;

cos ц - коэффициент активной мощности;

х0 = 0,088 Ом/км - удельное реактивное сопротивление кабеля на 1 км длины;

sin ц - коэффициент реактивной мощности;

Uн - номинальное напряжение, В.

ДU = Ч100% = 3,5%,

3,5% < 5%, кабель проходит по потерям напряжения


Министерство образования и науки Российской Федерации


(ФГБОУ ВПО ЗабГУ)
Кафедра «Электроснабжения»

Контрольная работа

По предмету: Электропитающие системы и электрические сети

Выполнил: студент группы ЭПс-10-1
Рогозинский А.П.
Проверил: Швец О.Б.

Чита 2013
Министерство образования и науки Российской Федерации
Федеральное государственное бюджетное учреждение высшего профессионального образования
«ЗАБАЙКАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»
(ФГБОУ ВПО ЗабГУ)
Кафедра «Электроснабжения»

ЗАДАНИЕ
на контрольную

По курсу «Электропитающие системы и электрические сети»

Студенту Рогозинскому А.П.

Тема
«Выбор и проверка проводников и защитных аппаратов в электрических сетях напряжением до 1000 В»

Вариант 301

Задание на контрольную работу.

Произвести выбор аппаратов защиты, их параметров, а также марку и сечения проводников, расположенных в помещении, относящемся к классу зоны П-IIа согласно ПУЭ.
Напряжение питания осветительной сети U = 220 В, линейное напряжение сети U л = 380 В.
Способ прокладки: проводников распределительной сети – в стальных трубах; кабеля питающей (магистральной) сети в – земле.
Исходные данные приведены в таблице 1; схема электрической сети показана на рисунке 1.

Таблица 1


Расчетные данные осветительной сети
Число светильников
10
Мощность одной лампы, Вт
500

Расчетные данные силовой распределительной сети
Номера электродвигателей
15,17,19

Параметры электродвигателей
Номер электродвигателя
Номинальная мощность, кВт
КПД
Коэффициент мощности cos?
Кратность пускового тока, k i
М15
7
0,87
0,89
6,0
М17
14
0,88
0,89
5,5
М19
4,5
0,86
0,88
7,0

Рисунок 1 – Схема электрической сети

    Тепловой расчет осветительных сетей
Целью теплового расчета низковольтных электрических сетей является выбор параметров защиты (плавких предохранителей, автоматических выключателей, тепловых реле), используемых для защиты сетей от токов короткого замыкания и перегрузок, а также выбор сечений жил проводников.
В соответствии с п.1.3.2 ПУЭ «проводники любого назначения должны удовлетворять требованиям в отношении предельно допустимого нагрева с учетом не только нормальных, но и послеаварийных режимов, а также режимов в период ремонта и возможных неравномерностей распределения токов между линиями, секциями шин и т.п. При проверке на нагрев принимается получасовой максимум тока, наибольший из средних получасовых токов данного элемента сети.
Тепловому расчету подлежат следующие виды электрических сетей:
    Осветительная сеть – сеть, питающая светильники и розетки;
    Силовая распределительная сеть (ответвления к электрическим двигателям) – сеть, питающая силовые электроприемники;
    Магистральная (питающая) сеть – сеть от распределительного щита, распределительного пункта или групповых щитов.
      Определяем класс зоны:
- сети внутри помещения, выполненные открыто проложенными проводниками с горючей оболочкой или изоляцией;
- осветительные сети в жилых и общественных зданиях, в торговых, служебно-бытовых помещениях, включая сети для бытовых и переносных электроприемников, а также сети в пожароопасных зонах;
      Рассчитаем рабочие токи осветительных сетей.
- Для однофазных линий:

Где - суммарная мощность светильников.

Фазное напряжение сети.

Аппараты защиты выбираются таким образом, чтобы номинальный ток плавкой вставки (для плавких предохранителей) или ток теплового или электромагнитного расцепителей (для автоматических выключателей) были не меньше (равны или несколько больше) рабочего тока:

Выбор аппаратов защиты производится по справочным таблицам.
Принимаем к установке автоматический выключатель типа АЕ 2044 с комбинированным расцепителем. Номинальный ток комбинированного расцепителя принимается из условия: .
Принимаем.
Номинальный ток автоматического выключателя.

Сечение проводников определяем по величине допустимой длительной токовой нагрузки на жилы проводников при этом должно выполняться следующее условие: (1).
Принимаем медный провод марки ПВ (с поливинилхлоридной изоляцией, двухжильный, сечением 2х2 мм 2 . При прокладке данного провода в стальной трубе имеем: = 23 А.
      Проверяем соответствие выбранных параметров автоматического выключателя сечению жил провода по условию: , имеем:
, следовательно, принятые параметры АВ не соответствуют выбранному сечению жил провода. Увеличиваем сечение провода. Принимаем провод марки ПВ, сечением 2х2,5 мм 2 . При прокладке данного провода в стальной трубе имеем: = 25 А.
Таким образом, получаем, т.е. условие (1 выполняется).
Проверяем соответствие выбранных параметров автоматического выключателя сечению жил провода по условию: , имеем:
, следовательно, принятые параметры АВ соответствуют выбранному сечению жил провода.
    Тепловой расчет силовой распределительной сети.
      Определяем класс зоны:
По условиям задачи помещение относится к классу П-IIа.
      Определяем требуемый вид защиты:
    от токов короткого замыкания защищаются все сети.
    от перегрузки сети защищаются в следующих случаях:
- сети всех видов во взрывоопасных зонах классов B-I, B-Ia, B-II, B-IIa.
- силовые распределительные сети на промышленных предприятиях, в жилых и общественных зданиях, торговых помещениях – в случаях, когда возможны перегрузки механизма по технологическим причинам или по режиму работы сети.
      Определяем номинальные и пусковые токи электродвигателей.
Номинальный ток, А для трехфазных двигателей переменного тока рассчитывается по формуле:

Где - номинальная мощность двигателя, Вт;
- линейное напряжение сети, В;
- коэффициент мощности электродвигателя;
- коэффициент полезного действия (КПД) электродвигателя.
Пусковой ток электродвигателя рассчитывается по формуле: ,
где - коэффициент кратности пускового тока, определяемый по справочникам и паспортным данным электродвигателя.
Для заданным электродвигателей имеем:
- двигатель М15

Двигатель М17:

Двигатель М19:

      Выбираем параметры аппаратов з ащиты.
    Для защиты от токов КЗ принимаем предохранители марки ПР-2.
Номинальный ток плавких вставок выбираем исходя из условия:
, где - коэффициент запуска. Принимаем = 2,0.

- двигатель М15 ().
.
Принимаем = 45А.

Двигатель М17 ().
.
Принимаем = 80 А.

Двигатель М19 ().
.
Принимаем = 35 А.

    Для защиты от перегрузки принимаем тепловое реле магнитных пускателей ПМЛ: номинальный ток теплового реле выбираем исходя из условия:
Для каждого из двигателей получаем:
- двигатель М15 ().


- двигатель М17 ().

Принимаем (пускатель ПМЛ 4220)
- двигатель М19 ().

Принимаем (пускатель ПМЛ 2220)

      Выбираем сечение жил проводник ов.
Выбор производим из условия: .
Принимаем к установке провод марки ПВ с медными жилами, с поливинилхлоридной изоляцией, трехжильный, с прокладкой в стальной трубе.

- двигатель М15 ().

Принимаем провод ПВ 3х1,5 мм 2 , сечение 1,5 мм 2 ,
- двигатель М17 ().

Принимаем провод ПВ 3х5 мм 2 , сечение 5 мм 2 ,
- двигатель М19 ().

Принимаем провод ПВ 3х1,5 мм 2 , сечение 1,5 мм 2 , .
Проверяем соответствие выбранных параметров аппаратов защиты сечениям жил проводника.

    При защите от КЗ должно выполняться условие: .
Для каждого из двигателей имеем:
- двигатель М15 ().
- условие выполняется.
- двигатель М17 ().
- условие выполняется.
- двигатель М19 ().
- условие выполняется.
    При защите от перегрузок должно выполняться условие: .
Для каждого из двигателей имеем:
двигатель М15:
Принимаем провод ПВ 3х2, сечение 2 мм 2 , .

двигатель М17:
- условие не выполняется. Увеличиваем сечение провода.
Принимаем провод ПВ 3х8, сечение 8 мм 2 , .
Получаем: - условие выполняется.
двигатель М19:
- условие выполняется.
    Тепловой расчет питающих сетей (силовых магистралей).
    Класс зоны.
При данном тепловом расчете класс зоны не определяется, так как питающие (магистральные) линии выполняются, либо кабелем в земле, либо воздушной линией. Во втором случае линия не должна проходить в границах пожароопасных и взрывоопасных зон.
    Определяем требуемый вид защиты.
      От токов КЗ.
      От перегрузок защита не требуется, так как магистрали находятся вне помещений.
    Рассчитаем рабочие и максимальные токи.
Нагрузку питающих сетей составляют токи силовых и осветительных потребителей.
Рабочий ток магистрали определяем по формуле:

Где - сумма номинальных токов всех (n) электродвигателей, А;
- сумма рабочих токов всех (m) светильников, А;
- коэффициент спроса (безразмерная величина, учитывающая одновременность работы электродвигателей).

При расчете максимального тока магистрали учитывают пусковой ток наиболее мощного электродвигателя, при этом исключают из суммы его номинальный ток.
Максимальный ток магистрали определяется по формуле:

Где - пусковой ток наиболее мощного электродвигателя, А.
А.

    Выбираем параметры аппаратов защиты и проверяем их на селективность.
Магистрали защищаются только от короткого замыкания.
При этом.
Для защиты от к.з. принимаем предохранитель марки ПР-2.
.
Принимаем =80А.
При выборе аппаратов защиты магистралей следует учитывать их селективность (избирательность) действия, т.е. при КЗ в сети дожжен реагировать только ближайший к месту повреждения аппарат защиты. Для этого необходимо выполнение следующего соотношения между токами двух последовательно соединенных аппаратов защиты:
,
Где - номинальный ток плавкой вставки предохранителя, ближнего к источнику питания, А;
- номинальный ток плавкой вставки предохранителя, следующего за первым от источника питания, А.
=80А.
= 80 А
, т.е. условие не выполняется.
Поэтому принимаем =160 А, тогда получаем - условие выполняется.
    Выбираем сечение жил силовой магистрали.
Выбор производится по таблицам раздела 1 исходя из условия:

Принимаем кабель ВРБ 3х10, сечением 10 мм 2 ,

    Проверяем соответствие выбранных параметров аппаратов защиты сечениям жил проводников:
- условие выполняется, следовательно, выбранные параметры аппаратов защиты соответствуют принятому сечению жил кабеля.

Библиографический список:

    Правила устройства электроустановок. 7-изд.: Все действующие разделы ПУЭ-7. – Новосибирск: Сиб.унив.изд-во, 2005. – 512 с.
    Неклепаев, Б.Н. Электрическая часть станций и подстанции. Справочные материалы для курсового и дипломного проектирования / Б.Н. Неклепаев, И.П. Крючков – М.: Энергоатомиздат, 1989.- 608 с.
    Коновалов, Л.Л. Электроснабжение промышленных предприятий и установок / Л.Л. Коновалов, Л.Д. Рожков – М.: Энергоатомиздат, 1989. – 528 с.
    Выбор и проверка проводников и защитных аппаратов в электрических сетях напряжением до 100В: метод. указания. / Разраб. В.И.Петуров. – Чита: ЧитГУ, 20069. – 24 с.

Выбор коммутационных аппаратов и аппаратов защиты к электроприемникам производится, исходя из номинальных данных последних и параметров питающей их сети, требований в отношении защиты приемников и сети от ненормальных режимов, эксплуатационных требований, в частности частоты включений и условий среды в месте установки аппаратов.

Выбор аппаратов по роду тока, числу полюсов, напряжению и мощности

Конструкция всех электрических аппаратов рассчитывается и маркируется заводами-изготовителями на определенные для каждого аппарата значения напряжения, тока и мощности, а также для определенного режима работы. Таким образом, выбор аппаратуры по всем этим признакам сводится, по существу, к отысканию на основании данных каталогов соответствующих типов и величин аппаратов.

Выбор аппаратов по условиям электрической защиты

При выборе аппаратов защиты следует иметь в виду возможность следующих ненормальных режимов:

а) междуфазные короткие замыкания,

б) замыкания фазы на корпус,

в) увеличение тока, вызванное перегрузкой технологического оборудования, а иногда неполным коротким замыканием,

г) исчезновение или чрезмерное понижение напряжения.

должна выполняться для всех электроприемников. Она должна действовать с минимальным временем отключения и должна быть отстроена от пусковых токов.

Защита от перегрузки необходима для всех электроприемников с продолжительным режимом работы, за исключением следующих случаев:

а) когда перегрузка электроприемников по технологическим причинам не может иметь места или маловероятна (центробежные насосы, вентиляторы и т. п.),

б) для электродвигателей мощностью менее 1 кВт.

Защита от перегрузки необязательна для электродвигателей, работающих в кратковременном или повторно-кратковременном режимах. Во взрывоопасных помещениях защита электроприемников от перегрузки обязательна во всех случаях. Защита минимального напряжения должна устанавливаться в следующих случаях:

а) для электродвигателей, которые не допускают включения в сеть при полном напряжении,

б) для электродвигателей, самопуск которых недопустим по технологическим причинам или представляет опасность для обслуживающего персонала,

в) для прочих электродвигателей, отключение которых при прекращении питания необходимо для того, чтобы понизить до допустимой величины суммарную пусковую мощность подключенных к сети электроприемников, и возможно с точки зрения условий работы механизмов.

Кроме сказанного выше, электродвигатели постоянного, тока с параллельным и смешанным возбуждением должны иметь защиту от чрезмерного повышения числа оборотов в случаях, когда такое повышение может привести к опасности для жизни людей или к значительным убыткам.

Зашита от чрезмерного повышения числа оборотов может осуществляться различными специальными реле (центробежными, индукционными и т. п.).

Так как в силовых сетях особое значение имеет защита от перегрузки и от коротких замыканий, остановимся несколько подробнее на принципиальной стороне этого вопроса.

Ток короткого замыкания должен отключаться мгновенно или почти мгновенно. Величина его в различных участках сети может быть весьма различна, но практически всегда можно считать, что аппараты защиты должны уверенно и быстро отключать любой ток, существенно больший пускового, и вместе с тем ни в коем случае не срабатывать при нормальном пуске.

Током перегрузки является любой ток, превышающий номинальный ток электродвигателя, но нет никаких оснований требовать отключения электродвигателя при каждом возникновении перегрузки.

Известно, что определенная перегрузка как электродвигателей, так и питающих их сетей, допустима, и что чем кратковременней перегрузка, тем больше может быть ее величина. Отсюда ясны преимущества для защиты от перегрузки таких аппаратов, которые имеют «зависимую характеристику», т. е. время срабатывания которых уменьшается с увеличением кратности перегрузки.

Поскольку, за очень редкими исключениями, аппарат защиты остается в цепи электродвигателя и при пуске, он не должен срабатывать при пусковом токе нормальной продолжительности.

Из приведенных соображений ясно, что в принципе для защиты от токов короткого замыкания должен применяться безынерционный аппарат, настроенный на ток, существенно больший пускового, а для защиты от перегрузок, наоборот, инерционный аппарат с зависимой характеристикой, выбранный так, чтобы он не срабатывал за время пуска. В наибольшей степени этим условиям удовлетворяет комбинированный расцепитель, сочетающий в себе тепловую защиту от перегрузки и мгновенное электромагнитное отключение при токе короткого замыкания.

С учетом сказанного выше и совокупности требований, предъявляемых к аппаратам управления и защиты, могут быть даны следующие рекомендации.

1. Для ручного управления электроприемниками с малыми пусковыми токами могут быть использованы и предохранители, встраиваемые в различные электроконструкции или распределительные и . Ящики ЯРВ без предохранителей применяются в качестве разъединяющих аппаратов для , магистралей и т. п.

2. Для ручного управления электродвигателями мощностью до 3 - 4 кВт, не требующими защиты от перегрузок, применяются .

3. Для электродвигателей мощностью до 55 кВт, требующих защиты от перегрузки, наиболее употребительными аппаратами являются магнитные пускатели в комбинации с плавкими предохранителями или воздушными автоматами.

При мощности электродвигателей более 55 кВт применяются в комбинации с защитными реле или воздушными автоматами. При этом следует помнить, что контакторы не допускают разрыва цепи при коротких замыканиях.

4. Для дистанционного управления электроприемниками применение магнитных пускателей или контакторов становится необходимым.

5. Для ручного управления электроприемниками при малом числе включений в час возможно использование автоматических выключателей.