Все о тюнинге авто

В классическом определении вероятность случайного события называется. Классическая вероятность. Вероятность случайного события

Теория вероятностей - математическая наука, изучающая закономерности в случайных явлениях. Возникновение теории относится к середине XVII века и связано с именем Гюйгенса, Паскаля, Ферма, Я. Бернулли.

Неразложимые исходы,..., некоторого эксперимента будем называть элементарными событиями, а их совокупность

(конечным) пространством элементарных событий, или пространством исходов.

Пример 21. а) При подбрасывании игральной кости пространство элементарных событий состоит из шести точек:

б) Подбрасываем монету два раза подряд, тогда

где Г - "герб", Р - "решетка" и общее число исходов

в) Подбрасываем монету до первого появления "герба", тогда

В этом случае называется дискретным пространством элементарных событий.

Обычно интересуются не тем, какой конкретно исход имеет место в результате испытания, а тем, принадлежит ли исход тому или иному подмножеству всех исходов. Все те подмножества, для которых по условиям эксперимента возможен ответ одного из двух типов: "исход " или "исход ", будем называть событиями.

В примере 21 б) множество = {ГГ, ГР, РГ} является событием, состоящим в том, что выпадает по крайней мере один "герб". Событие состоит из трех элементарных исходов пространства, поэтому

Суммой двух событий и называется событие, состоящее в выполнении события или события.

Произведением событий и называется событие, состоящее в совместном исполнении события и события.

Противоположным по отношению к событию называется событие, состоящее в непоявлении и, значит, дополняющее его до.

Множество называется достоверным событием, пустое множество - невозможным.

Если каждое появление события сопровождается появлением, то пишут и говорят, что предшествует или влечет за собой.

События и называются равносильными, если и.

Определение. Вероятностью события называется число, равное отношению числа элементарных исходов, составляющих событие, к числу всех элементарных исходов

Случай равновозможных событий, (называется "классическим", поэтому и вероятность

называется "классической".

Элементарные события (исходы опыта), входящие в событие, называются "благоприятными".

Свойства классической вероятности:

Если (и - несовместные события).

Пример 22 (задача Гюйгенса). В урне 2 белых и 4 черных шара. Один азартный человек держит пари с другим, что среди вынутых 3 шаров будет ровно один белый. В каком отношении находятся шансы спорящих?

Решение 1 (традиционное). В данном случае испытание = {вынимание 3 шаров}, а событие - благоприятствующее одному из спорящих:

= {достать ровно один белый шар}.

Поскольку порядок вынимания трех шаров не важен, то

Один белый шар можно достать в случаев, а два черных - , и тогда по основному правилу комбинаторики. Отсюда а по пятому свойству вероятности Следовательно,

Решение 2. Составим вероятностное дерево исходов:

Пример 23. Рассмотрим копилку, в которой осталось четыре монеты - три по 2 руб. и одна в 5 руб. Извлекаем две монеты.

Решение. а) Два последовательных извлечения (с возвращением) могут привести к следующим исходам:

Какова вероятность каждого из этих исходов?

В таблице показаны все шестнадцать возможных случаев.

Следовательно,

К тем же результатам ведет и следующее дерево:

б) Два последовательных извлечения (без повторения) могут привести к следующим трем исходам:

В таблице покажем все возможные исходы:

Следовательно,

К тем же результатам ведет и соответствующее дерево:

Пример 24 (задача де Мере). Двое играют в "орлянку" до пяти побед. Игра прекращена, когда первый выиграл четыре партии, а второй - три. Как в этом случае следует поделить первоначальную ставку?

Решение. Пусть событие = {выиграть приз первым игроком}. Тогда вероятностное дерево выигрыша для первого игрока следующее:

Отсюда, и три части ставки следует отдать первому игроку, а второму - одну часть.

Покажем эффективность решения вероятностных задач с помощью графов и на следующем примере, который мы рассматривали в §1 (пример 2).

Пример 25. Является ли выбор с помощью "считалки" справедливым?

Решение. Составим вероятностное дерево исходов:

и, следовательно, при игре в "считалки" выгодней стоять вторым.

В последнем решении использованы интерпретации на графах теорем сложения и умножения вероятностей:

и в частности

Если и - несовместные события

и, если и - независимые события.

Статическая вероятность

Классическое определение при рассмотрении сложных проблем наталкивается на трудности непреодолимого характера. В частности, в некоторых случаях выявить равновозможные случаи может быть невозможно. Даже в случае с монеткой, как известно существует явно не равновероятная возможность выпадения "ребра", которую из теоретических соображений оценить невозможно (можно только сказать, что оно маловероятно и то это соображение скорее практическое). Поэтому еще на заре становления теории вероятностей было предложено альтернативное "частотное" определение вероятности. А именно, формально вероятность можно определить как предел частоты наблюдений события A, предполагая однородность наблюдений (то есть одинаковость всех условий наблюдения) и их независимость друг от друга:

где - количество наблюдений, а - количество наступлений события.

Несмотря на то, что данное определение скорее указывает на способ оценки неизвестной вероятности - путем большого количества однородных и независимых наблюдений - тем не менее в таком определении отражено содержание понятия вероятности. А именно, если событию приписывается некоторая вероятность, как объективная мера его возможности, то это означает, что при фиксированных условиях и многократном повторении мы должны получить частоту его появления, близкую к (тем более близкую, чем больше наблюдений). Собственно, в этом заключается исходный смысл понятия вероятности. В основе лежит объективистский взгляд на явления природы. Ниже будут рассмотрены так называемые законы больших чисел, которые дают теоретическую основу (в рамках излагаемого ниже современного аксиоматического подхода) в том числе для частотной оценки вероятности.

Под вероятностью события понимается некоторая числовая характеристика возможности наступления этого события. Существует несколько подходов к определению вероятности.

Вероятностью события А называется отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу. Итак, вероятность события А определяется формулой

где m – число элементарных исходов, благоприятствующих А , n – число всех возможных элементарных исходов испытания.

Пример 3.1. В опыте с бросанием игральной кости число всех исходов n равно 6 и все они равновозможны. Пусть событие А означает появление четного числа. Тогда для этого события благоприятными исходами будут появление чисел 2, 4, 6. Их количество равно 3. Поэтому вероятность события А равна

Пример 3.2. Какова вероятность того, что в наудачу выбранном двузначном числе цифры одинаковы?

Двузначными числами являются числа от 10 до 99, всего таких чисел 90. Одинаковые цифры имеют 9 чисел (это числа 11, 22, …, 99). Так как в данном случае m =9, n =90, то

где А – событие, «число с одинаковыми цифрами».

Пример 3.3. В партии из 10 деталей 7 стандартных. Найти вероятность того, что среди шести взятых наудачу деталей 4 стандартных.

Общее число возможных элементарных исходов испытания равно числу способов, которыми можно извлечь 6 деталей из 10, т. е. числу сочетаний из 10 элементов по 6 элементов. Определим число исходов, благоприятствующих интересующему нас событию А (среди шести взятых деталей 4 стандартных). Четыре стандартные детали можно взять из семи стандартных деталей способами; при этом остальные 6-4=2 детали должны быть нестандартными, взять же две нестандартные детали из 10-7=3 нестандартных деталей можно способами. Следовательно, число благоприятствующих исходов равно .

Тогда искомая вероятность равна

Из определения вероятности вытекают следующие ее свойства:

1. Вероятность достоверного события равна единице.

Действительно, если событие достоверно, то каждый элементарный исход испытания благоприятствует событию. В этом случае m=n, следовательно

2. Вероятность невозможного события равна нулю.

Действительно, если событие невозможно, то ни один из элементарных исходов испытания не благоприятствует событию. В этом случае значит

3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных исходов испытания. В этом случае < m < n, значит 0 < m/n < 1, т. е. 0 < Р(А) < 1. Итак, вероятность любого события удовлетворяет двойному неравенству


Построение логически полноценной теории вероятностей основано на аксиоматическом определении случайного события и его вероятности. В системе аксиом, предложенной А. Н. Колмогоровым, неопределяемыми понятиями являются элементарное событие и вероятность. Приведем аксиомы, определяющие вероятность:

1. Каждому событию А поставлено в соответствие неотрицательное действительное число Р(А) . Это число называется вероятностью события А .

2. Вероятность достоверного события равна единице.

3. Вероятность наступления хотя бы одного из попарно несовместных событий равна сумме вероятностей этих событий.

Исходя из этих аксиом, свойства вероятностей и зависимости между ними выводят в качестве теорем.

Вопросы для самопроверки

1. Как называется числовая характеристика возможности наступления события?

2. Что называется вероятностью события?

3. Чему равна вероятность достоверного события?

4. Чему равна вероятность невозможного события?

5. В каких пределах заключена вероятность случайного события?

6. В каких пределах заключена вероятность любого события?

7. Какое определение вероятности называется классическим?

Классическое и статистическое определение вероятности

Для практической деятельности необходимо уметь сравнивать события по степени возможности их наступления. Рассмотрим классический случай. В урне находится 10 шаров, 8 из них белого цвета, 2 черного. Очевидно, что событие «из урны будет извлечен шар белого цвета» и событие «из урны будет извлечен шар черного цвета» обладают разной степенью возможности их наступления. Поэтому для сравнения событий нужна определенная количественная мера.

Количественной мерой возможности наступления события является вероятность . Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое.

Классическое определение вероятности связано с понятием благоприятствующего исхода. Остановимся на этом подробнее.

Пусть исходы некоторого испытания образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Такие исходы называют элементарными исходами , или случаями . При этом говорят, что испытание сводится к схеме случаев или «схеме урн », т.к. любую вероятностную задачу для подобного испытания можно заменить эквивалентной задачей с урнами и шарами разных цветов.

Исход называется благоприятствующим событию А , если появление этого случая влечет за собой появление события А .

Согласно классическому определению вероятность события А равна отношению числа исходов, благоприятствующих этому событию, к общему числу исходов , т.е.

, (1.1)

где Р(А) – вероятность события А ; m – число случаев благоприятствующих событию А ; n – общее число случаев.

Пример 1.1. При бросании игральной кости возможны шесть исходов – выпадение 1, 2, 3, 4, 5, 6 очков. Какова вероятность появления четного числа очков?

Решение. Все n = 6 исходов образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Событию А – «появление четного числа очков» – благоприятствуют 3 исхода (случая) – выпадение 2, 4 или 6 очков. По классической формуле вероятности события получаем

Р(А) = = .

Исходя из классического определения вероятности события, отметим ее свойства:

1. Вероятность любого события заключена между нулем и единицей, т.е.

0 ≤ Р (А ) ≤ 1.

2. Вероятность достоверного события равна единице.

3. Вероятность невозможного события равна нулю.

Как было сказано ранее, классическое определение вероятности применимо только для тех событий, которые могут появиться в результате испытаний, обладающих симметрией возможных исходов, т.е. сводящихся к схеме случаев. Однако существует большой класс событий, вероятности которых не могут быть вычислены с помощью классического определения.

Например, если допустить, что монета сплющена, то очевидно, что события «появление герба» и «появление решки» нельзя считать равновозможными. Поэтому формула для определения вероятности по классической схеме в данном случае неприменима.

Однако существует другой подход при оценке вероятности событий, основанный на том, насколько часто будет появляться данное событие в произведенных испытаниях. В этом случае используется статистическое определениевероятности.

Статистической вероятностью события А называется относительная частота (частость) появления этого события в n произведенных испытаниях, т.е.

, (1.2)

где Р * (А) – статистическая вероятность события А ; w(A) – относительная частота события А ; m – число испытаний, в которых появилось событие А ; n – общее число испытаний.

В отличие от математической вероятности Р(А) , рассматриваемой в классическом определении, статистическая вероятность Р * (А) является характеристикой опытной , экспериментальной . Иначе говоря, статистической вероятностью события А называется число, относительно которого стабилизируется (устанавливается) относительная частота w(А) при неограниченном увеличении числа испытаний, проводимых при одном и том же комплексе условий.

Например, когда про стрелка говорят, что он попадает в цель с вероятностью 0,95, то это означает, что из сотни выстрелов, произведенных им при определенных условиях (одна и та же цель на том же расстоянии, та же винтовка и т.д.), в среднем бывает примерно 95 удачных. Естественно, не в каждой сотне будет 95 удачных выстрелов, иногда их будет меньше, иногда больше, но в среднем при многократном повторении стрельбы в тех же условиях этот процент попаданий будет оставаться неизменным. Цифра 0,95, служащая показателем мастерства стрелка, обычно очень устойчива , т.е. процент попаданий в большинстве стрельб будет для данного стрелка почти один и тот же, лишь в редких случаях отклоняясь сколько-нибудь значительно от своего среднего значения.

Еще одним недостатком классического определения вероятности (1.1 ), ограничивающим его применение, является то, что оно предполагает конечное число возможных исходов испытания. В некоторых случаях этот недостаток можно преодолеть, используя геометрическое определение вероятности, т.е. находя вероятность попадания точки в некоторую область (отрезок, часть плоскости и т.п.).

Пусть плоская фигура g составляет часть плоской фигуры G (рис. 1.1). На фигуру G наудачу бросается точка. Это означает, что все точки области G «равноправны» в отношении попадания на нее брошенной случайной точки. Полагая, что вероятность события А – попадания брошенной точки на фигуру g – пропорциональна площади этой фигуры и не зависит ни от ее расположения относительно G , ни от формы g , найдем

Изначально, будучи всего лишь собранием сведений и эмпирических наблюдений за игрой в кости, теория вероятности стала основательной наукой. Первыми, кто придал ей математический каркас, были Ферма и Паскаль.

От размышлений о вечном до теории вероятностей

Две личности, которым теория вероятностей обязана многими фундаментальными формулами, Блез Паскаль и Томас Байес, известны как глубоко верующие люди, последний был пресвитерианским священником. Видимо, стремление этих двух ученых доказать ошибочность мнения о некой Фортуне, дарующей удачу своим любимчикам, дало толчок к исследованиям в этой области. Ведь на самом деле любая азартная игра с ее выигрышами и проигрышами — это всего лишь симфония математических принципов.

Благодаря азарту кавалера де Мере, который в равной степени был игроком и человеком небезразличным к науке, Паскаль вынужден был найти способ расчета вероятности. Де Мере интересовал такой вопрос: "Сколько раз нужно выбрасывать попарно две кости, чтобы вероятность получить 12 очков превышала 50%?". Второй вопрос, крайне интересовавший кавалера: "Как разделить ставку между участниками незаконченной игры?" Разумеется, Паскаль успешно ответил на оба вопроса де Мере, который стал невольным зачинателем развития теории вероятностей. Интересно, что персона де Мере так и осталась известна в данной области, а не в литературе.

Ранее ни один математик еще не делал попыток вычислять вероятности событий, поскольку считалось, что это лишь гадательное решение. Блез Паскаль дал первое определение вероятности события и показал, что это конкретная цифра, которую можно обосновать математическим путем. Теория вероятностей стала основой для статистики и широко применяется в современной науке.

Что такое случайность

Если рассматривать испытание, которое можно повторить бесконечное число раз, тогда можно дать определение случайному событию. Это один из вероятных исходов опыта.

Опытом является осуществление конкретных действий в неизменных условиях.

Чтобы можно было работать с результатами опыта, события обычно обозначают буквами А, B, C, D, Е…

Вероятность случайного события

Чтобы можно было приступить к математической части вероятности, нужно дать определения всем ее составляющим.

Вероятность события - это выраженная в числовой форме мера возможности появления некоторого события (А или B) в результате опыта. Обозначается вероятность как P(A) или P(B).

В теории вероятностей отличают:

  • достоверное событие гарантированно происходит в результате опыта Р(Ω) = 1;
  • невозможное событие никогда не может произойти Р(Ø) = 0;
  • случайное событие лежит между достоверным и невозможным, то есть вероятность его появления возможна, но не гарантирована (вероятность случайного события всегда в пределах 0≤Р(А)≤ 1).

Отношения между событиями

Рассматривают как одно, так и сумму событий А+В, когда событие засчитывается при осуществлении хотя бы одного из составляющих, А или В, или обоих - А и В.

По отношению друг к другу события могут быть:

  • Равновозможными.
  • Совместимыми.
  • Несовместимыми.
  • Противоположными (взаимоисключающими).
  • Зависимыми.

Если два события могут произойти с равной вероятностью, то они равновозможные .

Если появление события А не сводит к нулю вероятность появление события B, то они совместимые.

Если события А и В никогда не происходят одновременно в одном и том же опыте, то их называют несовместимыми . Бросание монеты - хороший пример: появление решки - это автоматически непоявление орла.

Вероятность для суммы таких несовместимых событий состоит из суммы вероятностей каждого из событий:

Р(А+В)=Р(А)+Р(В)

Если наступление одного события делает невозможным наступление другого, то их называют противоположными. Тогда одно из них обозначают как А, а другое - Ā (читается как «не А»). Появление события А означает, что Ā не произошло. Эти два события формируют полную группу с суммой вероятностей, равной 1.

Зависящие события имеют взаимное влияние, уменьшая или увеличивая вероятность друг друга.

Отношения между событиями. Примеры

На примерах гораздо проще понять принципы теории вероятностей и комбинации событий.

Опыт, который будет проводиться, заключается в вытаскивании шариков из ящика, а результата каждого опыта - элементарный исход.

Событие - это один из возможных исходов опыта - красный шар, синий шар, шар с номером шесть и т. д.

Испытание №1. Участвуют 6 шаров, три из которых окрашены в синий цвет, на них нанесены нечетные цифры, а три других - красные с четными цифрами.

Испытание №2. Участвуют 6 шаров синего цвета с цифрами от одного до шести.

Исходя из этого примера, можно назвать комбинации:

  • Достоверное событие. В исп. №2 событие «достать синий шар» достоверное, поскольку вероятность его появления равна 1, так как все шары синие и промаха быть не может. Тогда как событие «достать шар с цифрой 1» - случайное.
  • Невозможное событие. В исп. №1 с синими и красными шарами событие «достать фиолетовый шар» невозможное, поскольку вероятность его появления равна 0.
  • Равновозможные события. В исп. №1 события «достать шар с цифрой 2» и «достать шар с цифрой 3» равновозможные, а события «достать шар с четным числом» и «достать шар с цифрой 2» имеют разную вероятность.
  • Совместимые события. Два раза подряд получить шестерку в процессе бросания игральной кости - это совместимые события.
  • Несовместимые события. В том же исп. №1 события «достать красный шар» и «достать шар с нечетным числом» не могут быть совмещены в одном и том же опыте.
  • Противоположные события. Наиболее яркий пример этого - подбрасывание монет, когда вытягивание орла равносильно невытягиванию решки, а сумма их вероятностей - это всегда 1 (полная группа).
  • Зависимые события . Так, в исп. №1 можно задаться целью извлечь два раза подряд красный шар. Его извлечение или неизвлечение в первый раз влияет на вероятность извлечения во второй раз.

Видно, что первое событие существенно влияет на вероятность второго (40% и 60%).

Формула вероятности события

Переход от гадательных размышлений к точным данным происходит посредством перевода темы в математическую плоскость. То есть суждения о случайном событии вроде "большая вероятность" или "минимальная вероятность" можно перевести к конкретным числовым данным. Такой материал уже допустимо оценивать, сравнивать и вводить в более сложные расчеты.

С точки зрения расчета, определение вероятности события - это отношение количества элементарных положительных исходов к количеству всех возможных исходов опыта относительно определенного события. Обозначается вероятность через Р(А), где Р означает слово «probabilite», что с французского переводится как «вероятность».

Итак, формула вероятности события:

Где m - количество благоприятных исходов для события А, n - сумма всех исходов, возможных для этого опыта. При этом вероятность события всегда лежит между 0 и 1:

0 ≤ Р(А)≤ 1.

Расчет вероятности события. Пример

Возьмем исп. №1 с шарами, которое описано ранее: 3 синих шара с цифрами 1/3/5 и 3 красных с цифрами 2/4/6.

На основании этого испытания можно рассматривать несколько разных задач:

  • A - выпадение красного шара. Красных шаров 3, а всего вариантов 6. Это простейший пример, в котором вероятность события равна Р(А)=3/6=0,5.
  • B - выпадение четного числа. Всего четных чисел 3 (2,4,6), а общее количество возможных числовых вариантов - 6. Вероятность этого события равна Р(B)=3/6=0,5.
  • C - выпадение числа, большего, чем 2. Всего таких вариантов 4 (3,4,5,6) из общего количества возможных исходов 6. Вероятность события С равна Р(С)=4/6=0,67.

Как видно из расчетов, событие С имеет большую вероятность, поскольку количество вероятных положительных исходов выше, чем в А и В.

Несовместные события

Такие события не могут одновременно появиться в одном и том же опыте. Как в исп. №1 невозможно одновременно достать синий и красный шар. То есть можно достать либо синий, либо красный шар. Точно так же в игральной кости не могут одновременно появиться четное и нечетное число.

Вероятность двух событий рассматривается как вероятность их суммы или произведения. Суммой таких событий А+В считается такое событие, которое состоит в появлении события А или В, а произведение их АВ - в появлении обоих. Например, появление двух шестерок сразу на гранях двух кубиков в одном броске.

Сумма нескольких событий являет собой событие, предполагающее появление, по крайней мере, одного из них. Произведение нескольких событий - это совместное появление их всех.

В теории вероятности, как правило, употребление союза "и" обозначает сумму, союза "или" - умножение. Формулы с примерами помогут понять логику сложения и умножения в теории вероятностей.

Вероятность суммы несовместных событий

Если рассматривается вероятность несовместных событий, то вероятность суммы событий равна сложению их вероятностей:

Р(А+В)=Р(А)+Р(В)

Например: вычислим вероятность того, что в исп. №1 с синими и красными шарами выпадет число между 1 и 4. Рассчитаем не в одно действие, а суммой вероятностей элементарных составляющих. Итак, в таком опыте всего 6 шаров или 6 всех возможных исходов. Цифры, которые удовлетворяют условие, - 2 и 3. Вероятность выпадения цифры 2 составляет 1/6, вероятность цифра 3 также 1/6. Вероятность того, что выпадет цифра между 1 и 4 равна:

Вероятность суммы несовместимых событий полной группы равна 1.

Так, если в опыте с кубиком сложить вероятности выпадения всех цифр, то в результате получим единицу.

Также это справедливо для противоположных событий, например в опыте с монетой, где одна ее сторона - это событие А, а другая - противоположное событие Ā, как известно,

Р(А) + Р(Ā) = 1

Вероятность произведения несовместных событий

Умножение вероятностей применяют, когда рассматривают появление двух и более несовместных событий в одном наблюдении. Вероятность того, что в нем появятся события A и B одновременно, равна произведению их вероятностей, или:

Р(А*В)=Р(А)*Р(В)

Например, вероятность того, что в исп. №1 в результате двух попыток два раза появится синий шар, равна

То есть вероятность наступления события, когда в результате двух попыток с извлечением шаров будет извлечены только синие шары, равна 25%. Очень легко проделать практические эксперименты этой задачи и увидеть, так ли это на самом деле.

Совместные события

События считаются совместными, когда появление одного из них может совпасть с появлением другого. Несмотря на то что они совместные, рассматривается вероятность независимых событий. К примеру, бросание двух игральных костей может дать результат, когда на обеих из них выпадает цифра 6. Хотя события совпали и появились одновременно, они независимы друг от друга - могла выпасть всего одна шестерка, вторая кость на нее влияния не имеет.

Вероятность совместных событий рассматривают как вероятность их суммы.

Вероятность суммы совместных событий. Пример

Вероятность суммы событий А и В, которые по отношению к друг другу совместные, равняется сумме вероятностей события за вычетом вероятности их произведения (то есть их совместного осуществления):

Р совместн. (А+В)=Р(А)+Р(В)- Р(АВ)

Допустим, что вероятность попадания в мишень одним выстрелом равна 0,4. Тогда событие А - попадание в мишень в первой попытке, В - во второй. Эти события совместные, поскольку не исключено, что можно поразить мишень и с первого, и со второго выстрела. Но события не являются зависимыми. Какова вероятность наступления события поражения мишени с двух выстрелов (хотя бы с одного)? Согласно формуле:

0,4+0,4-0,4*0,4=0,64

Ответ на вопрос следующий: "Вероятность попасть в цель с двух выстрелов равна 64%".

Эта формула вероятности события может быть применима и к несовместным событиям, где вероятность совместно появления события Р(АВ) = 0. Это значит, что вероятность суммы несовместных событий можно считать частным случаем предложенной формулы.

Геометрия вероятности для наглядности

Интересно, что вероятность суммы совместных событий может быть представлена в виде двух областей А и В, которые пересекаются между собой. Как видно из картинки, площадь их объединения равна общей площади за минусом области их пересечения. Это геометрическое пояснения делают более понятной нелогичную на первый взгляд формулу. Отметим, что геометрические решения - не редкость в теории вероятностей.

Определение вероятности суммы множества (больше двух) совместных событий довольно громоздкое. Чтобы вычислить ее, нужно воспользоваться формулами, которые предусмотрены для этих случаев.

Зависимые события

Зависимыми события называются в случае, если наступление одного (А) из них влияет на вероятность наступления другого (В). Причем учитывается влияние как появления события А, так и его непоявление. Хотя события и называются зависимыми по определению, но зависимо лишь одно из них (В). Обычная вероятность обозначалась как Р(В) или вероятность независимых событий. В случае с зависимыми вводится новое понятие - условная вероятность Р A (В) , которая является вероятностью зависимого события В при условии произошедшего события А (гипотезы), от которого оно зависит.

Но ведь событие А тоже случайно, поэтому у него также есть вероятность, которую нужно и можно учитывать в осуществляемых расчетах. Далее на примере будет показано, как работать с зависимыми событиями и гипотезой.

Пример расчета вероятности зависимых событий

Хорошим примером для расчета зависимых событий может стать стандартная колода карт.

На примере колоды в 36 карт рассмотрим зависимые события. Нужно определить вероятность того, что вторая карта, извлеченная из колоды, будет бубновой масти, если первая извлеченная:

  1. Бубновая.
  2. Другой масти.

Очевидно, что вероятность второго события В зависит от первого А. Так, если справедлив первый вариант, что в колоде стало на 1 карту (35) и на 1 бубну (8) меньше, вероятность события В:

Р A (В) =8/35=0,23

Если же справедлив второй вариант, то в колоде стало 35 карт, и по-прежнему сохранилось полное число бубен (9), тогда вероятность следующего события В:

Р A (В) =9/35=0,26.

Видно, что если событие А условлено в том, что первая карта - бубна, то вероятность события В уменьшается, и наоборот.

Умножение зависимых событий

Руководствуясь предыдущей главой, мы принимаем первое событие (А) как факт, но если говорить по сути, оно имеет случайный характер. Вероятность этого события, а именно извлечение бубны из колоды карт, равна:

Р(А) = 9/36=1/4

Поскольку теория не существует сама по себе, а призвана служить в практических целях, то справедливо отметить, что чаще всего нужна вероятность произведения зависимых событий.

Согласно теореме о произведении вероятностей зависимых событий, вероятность появления совместно зависимых событий А и В равна вероятности одного события А, умноженная на условную вероятность события В (зависимого от А):

Р(АВ) = Р (А) *Р A (В)

Тогда в примере с колодой вероятность извлечения двух карт с мастью бубны равна:

9/36*8/35=0,0571, или 5,7%

И вероятность извлечения вначале не бубны, а потом бубны, равна:

27/36*9/35=0,19, или 19%

Видно, что вероятность появления события В больше при условии, что первой извлекается карта масти, отличной от бубны. Такой результат вполне логичный и понятный.

Полная вероятность события

Когда задача с условными вероятностями становится многогранной, то обычными методами ее вычислить нельзя. Когда гипотез больше двух, а именно А1,А2,…,А n , ..образует полную группу событий при условии:

  • P(A i)>0, i=1,2,…
  • A i ∩ A j =Ø,i≠j.
  • Σ k A k =Ω.

Итак, формула полной вероятности для события В при полной группе случайных событий А1,А2,…,А n равна:

Взгляд в будущее

Вероятность случайного события крайне необходима во многих сферах науки: эконометрике, статистике, в физике и т. д. Поскольку некоторые процессы невозможно описать детерминировано, так как они сами имеют вероятностный характер, необходимы особые методы работы. Теория вероятности события может быть использована в любой технологичной сфере как способ определить возможность ошибки или неисправности.

Можно сказать, что, узнавая вероятность, мы некоторым образом делаем теоретический шаг в будущее, разглядывая его через призму формул.

3) P (Æ )=0.

Будем говорить, что задано вероятностное пространство , если задано пространство элементарных исходов9 и определено соответствие

w i ® P(w i ) =Pi .

Возникает вопрос: как определить из конкретных условий решаемой задачи вероятность P (w i ) отдельных элементарных исходов?

Классическое определение вероятности.

Вычислять вероятности P (w i ) можно, используя априорный подход, который заключается в анализе специфических условий данного эксперимента (до проведения самого эксперимента).

Возможна ситуация, когда пространство элементарных исходов состоит из конечного числа N элементарных исходов, причем случайный эксперимент таков, что вероятности осуществления каждого из этихN элементарных исходов представляются равными.Примеры таких случайных экспериментов: подбрасывание симметричной монеты, бросание правильной игральной кости, случайное извлечение игральной карты из перетасованной колоды. В силу введенной аксиомы вероятности каждого элементарного

исхода в этом случае равны N . Из этого следует, что если событиеА содержитN A элементарных исходов, то в соответствии с определением (*)

P(A) = A

В данном классе ситуаций вероятность события определяется как отношение числа благоприятных исходов к общему числу всех возможных исходов.

Пример . Из набора, содержащего 10 одинаковых на вид электроламп, среди которых 4 бракованных, случайным образом выбирается 5 ламп. Какова вероятность, что среди выбранных ламп будут 2 бракованные?

Прежде всего отметим, что выбор любой пятерки ламп имеет одну и ту же вероятность. Всего существует C 10 5 способов составить такую пятерку, то есть случайный эксперимент в данном случае имеетC 10 5 равновероятных исходов.

Сколько из этих исходов удовлетворяют условию "в пятерке две бракованные лампы", то есть сколько исходов принадлежат интересующему нас событию?

Каждую интересующую нас пятерку можно составить так: выбрать две бракованные лампы, что можно сделать числом способов, равным C 4 2 . Каждая пара бракованных ламп может встретиться столько раз, сколькими способами ее можно дополнить тремя не бракованными лампами, то естьÑ 6 3 раз. Получается, что число пятерок, содержащих две

Статистическое определение вероятности.

Рассмотрим случайный эксперимент, заключающийся в том, что подбрасывается игральная кость, сделанная из неоднородного материала. Ее центр тяжести не находится в геометрическом центре. В этом случае мы не можем считать исходы (выпадение единицы, двойки и т.д.) равновероятными. Из физики известно, что кость более часто будет падать на ту грань, которая ближе к центру тяжести. Как определить вероятность выпадения, например, трех очков? Единственное, что можно сделать, это подбросить эту кость n раз (где n -достаточно большое число, скажемn =1000 илиn =5000), подсчитать число выпадений трех очковn 3 и считать вероятность исхода, заключающегося в выпадении трех очков, равнойn 3 /n - относительной частоте выпадения трех очков. Аналогичным образом можно определить вероятности остальных элементарных исходов - единицы, двойки, четверки и т.д. Теоретически такой образ действий можно оправдать, если ввестистатистическое определение вероятности .

Вероятность P(M i ) определяется как предел относительной частоты появления исходаM i в процессе неограниченного увеличения числа случайных экспериментовn , то есть

P i = P (M i ) = lim m n (M i ) , n ®¥n

где m n (M i ) – число случайных экспериментов (из общего числаn произведенных случайных экспериментов), в которых зарегистрировано появление элементарного исходаM i .

Так как здесь не приводится никаких доказательств, мы можем только надеяться, что предел в последней формуле существует, обосновывая надежду жизненным опытом и интуицией.

Геометрическая вероятность

В одном специальном случае дадим определение вероятности события для случайного эксперимента с несчетным множеством исходов.

Если между множеством W элементарных исходов случайного эксперимента и множеством точек некоторой плоской фигурыS (сигма большая) можно установить взаимно-однозначное соответствие, а также можо установить взаимно-однозначное соответствие между множеством элементарных исходов, благоприятствующих событиюА , и множеством точек плоской фигурыI (сигма малая), являющейся частью фигурыS , то

P(A) = S ,

где s - площадь фигурыs ,S - площадь фигурыS .

Пример. Два человека обедают в столовой, которая открыта с 12 до 13 часов. Каждый из них приходит в произвольный момент времени и обедает в течение 10 минут. Какова вероятность их встречи?

Пусть x - время прихода первого в столовую, аy - время прихода второго

12 £ x £ 13; 12 £y £ 13.

Можно установить взаимно-однозначное соответствие между всеми парами чисел (x ;y ) (или множеством исходов) и множеством точек квадрата со стороной, равной 1, на координатной плоскости, где начало координат соответствует числу 12 по осиX и по осиY , как изображено на рисунке 6. Здесь, например, точкаА соответствует исходу, заключающемуся в том, что первый пришел в 12.30, а второй - в 13.00. В этом случае, очевидно,

встреча не состоялась.

Если первый пришел не позже второго (y ³ x ), то

встреча произойдет при условии 0 £ y - x £ 1/6

(10 мин.- это 1/6 часа).

Если второй пришел не позже первого (x ³ y ), то

встреча произойдет при условии 0 £ x - y £ 1/6..

Между множеством исходов, благоприятствующих

встрече, и множеством точек области s , изображенной на

рисунке 7 в заштрихованном виде, можно установить

взаимно-однозначное cоответствие.

Искомая вероятность p равна отношению площади

области s к площади всего квадрата.. Площадь квадрата

равна единице, а площадь области s можно определить как

разность единицы и суммарной площади двух

треугольников, изображенных на рисунке 7. Отсюда следует:

p =1 -

Непрерывное вероятностное пространство.

Как уже говорилось ранее, множество элементарных исходов может быть более, чем счетным (то есть несчетным). В этом случае нельзя считать любое подмножество множества W событием.

Чтобы ввести определение случайного события, рассмотрим систему (конечную или счетную) подмножеств A 1 , A 2 ,... A n пространства элементарных исходовW .

В случае выполнения трех условий: 1) W принадлежит этой системе;

2) из принадлежности А этой системе следует принадлежностьA этой системе;

3) из принадлежностиA i иA j этой системе следует принадлежностьA i U A j этой

системе такая система подмножеств называется алгеброй.

Пусть W - некоторое пространство элементарных исходов. Убедитесь в том, что две системып одмножеств:

1) W ,Æ ; 2)W ,А ,A ,Æ (здесьА - подмножествоW ) являются алгебрами.

Пусть A 1 иA 2 принадлежат некоторой алгебре. Докажите, чтоA 1 \A 2 иA 1 ∩ A 2 принадлежат этой алгебре.

Подмножество А несчетного множества элементарных исходов 9 является событием, если оно принадлежит некоторой алгебре.

Сформулируем аксиому, называемую аксиомой А.Н. Колмогорова.

Каждому событию соответствует неотрицательное и не превосходящее единицы число P(А), называемое вероятностью событияА , причем функцияP(А) обладает следующими свойствами:

1) Р (9 )=1

2) если события A 1 ,A 2 ,...,A n несовместны, то

P (A 1 U A 2 U ... U A n ) =P (A 1 ) +P (A 2 ) +... +P (A n )

Если задано пространство элементарных исходов W , алгебра событий и определенная на ней функцияР , удовлетворяющая условиям приведенной аксиомы, то говорят, что задановероятностное пространство .

Это определение вероятностного пространства можно перенести на случай конечного пространства элементарных исходов W . Тогда в качестве алгебры можно взять систему всех подмножеств множестваW .

Формулы сложения вероятностей.

Из пункта 2 приведенной аксиомы следует, что если A 1 и A2 несовместные события, то

P (A 1 U A 2 ) =P (A 1 ) +P (A 2 )

Если A 1 иA 2 - совместные события, тоA 1 U A 2 =(A 1 \A 2 )U A 2 , причем очевидно, чтоA 1 \A 2 иA 2 - несовместные события. Отсюда следует:

P (A 1 U A 2 ) =P (A1 \A 2 ) +P (A2 )

Далее очевидно: A 1 = (A1 \A 2 )U (A 1 ∩ A 2 ), причем A1 \A 2 иA 1 ∩ A 2 - несовместные события, откуда следует:P (A 1 ) =P (A1 \A 2 ) +P (A 1 ∩ A 2 ) Найдем из этой формулы выражение дляP (A1 \A 2 ) и подставим его в правую часть формулы (*). В результате получим формулу сложения вероятностей:

P (A 1 U A 2 ) =P (A 1 ) +P (A 2 ) –P (A 1 ∩ A 2 )

Из последней формулы легко получить формулу сложения вероятностей для несовместных событий, положив A 1 ∩ A 2 =Æ .

Пример. Найти вероятность вытащить туза или червовую масть при случайном отборе одной карты из колоды в 32 листа.

Р (ТУЗ) = 4/32 = 1/8;Р (ЧЕРВОВАЯ МАСТЬ) = 8/32 = 1/4;

Р (ТУЗ ЧЕРВЕЙ) = 1/32;

Р ((ТУЗ)U (ЧЕРВОВАЯ МАСТЬ)) = 1/8 + 1/4 - 1/32 =11/32

Того же результата можно было достичь с помощью классического определения вероятности, пересчитав число благоприятных исходов.

Условные вероятности.

Рассмотрим задачу. Студент перед экзаменом выучил из 30 билетов билеты с номерами с 1 по 5 и с 26 по 30. Известно, что студент на экзамене вытащил билет с номером, не превышающим 20. Какова вероятность, что студент вытащил выученный билет?

Определим пространство элементарных исходов: W =(1,2,3,...,28,29,30). Пусть событиеА заключается в том, что студент вытащил выученный билет:А = (1,...,5,25,...,30,), а событиеВ - в том, что студент вытащил билет из первых двадцати:В = (1,2,3,...,20)

Событие А ∩ В состоит из пяти исходов: (1,2,3,4,5), и его вероятность равна 5/30. Это число можно представить как произведение дробей 5/20 и 20/30. Число 20/30 - это вероятность событияB . Число 5/20 можно рассматривать как вероятность событияА при условии, что событиеВ произошло (обозначим еёР (А /В )). Таким образом решение задачи определяется формулой

P (А ∩ В ) =Р (А /В )Р (B )

Эта формула называется формулой умножения вероятностей, а вероятность Р (А /В ) - условной вероятностью событияA .

Пример..Из урны, содержащей 7 белых и 3 черных шаров, наудачу один за другим извлекают (без возвращения) два шара. Какова вероятность того, что первый шар будет белым, а второй черным?

Пусть X - событие, состоящее в извлечении первым белого шара, аY - событие, состоящее в извлечении вторым черного шара. ТогдаX ∩ Y - событие, заключающееся в том, что первый шар будет белым, а второй - черным.P (Y /X ) =3/9 =1/3 - условная вероятность извлечения вторым черного шара, если первым был извлечен белый. Учитывая, чтоP (X ) = 7/10, по формуле умножения вероятностей получаем:P (X ∩ Y ) = 7/30

Событие А называется независимым от события В (иначе: события А и В называются независимыми), если Р (А / В )= Р (А ). За определение независимых событий можно принять следствие последней формулы и формулы умножения

P (А ∩ В ) =Р (А )Р (B )

Докажите самостоятельно, что если А иВ - независимые события, тоA иB тоже являются независимыми события.

Пример.Рассмотрим задачу, аналогичную предыдущей, но с одним дополнительным условием: вытащив первый шар, запоминаем его цвет и возвращаем шар в урну, после чего все шары перемешиваем. В данном случае результат второго извлечения никак не зависит от того, какой шар - черный или белый появился при первом извлечении. Вероятность появления первым белого шара (событие А ) равна 7/10. Вероятность событияВ - появления вторым черного шара - равна 3/10. Теперь формула умножения вероятностей дает:P (А ∩ В ) = 21/100.

Извлечение шаров способом, описанным в этом примере, называется выборкой с возвращением иливозвратной выборкой .

Следует отметить, что если в двух последних примерах положить изначальные количества белых и черных шаров равными соответственно 7000 и 3000, то результаты расчетов тех же вероятностей будут отличаться пренебрежимо мало для возвратной и безвозвратной выборок.