Все о тюнинге авто

Проектирование водяного пожаротушения. Скачать Пособие Проектирование водяных и пенных автоматических установок пожаротушения. Учебно-методическое пособие Основы проектирования и расчета пожаротушения

Automatic Water Fire Extinguishing Systems. Questions and Answers

L. M. Meshman, Candidate of Engineering, Leaders Researcher at FSBI VNIIPO of the MES of Russia

Keywords: fire protection, automatic fire extinguishing units, sprinkler, indoor fire line

This article offers answers to the designers" questions related to specific of design and efficiency of operation of automated firefighting systems.

Описание:

Л. М. Мешман , канд. техн. наук, ведущий научный сотрудник ФГБУ ВНИИПО МЧС России

В данном материале приведены ответы на вопросы проектировщиков, связанные с особенностью проектирования и эффективностью функционирования автоматических систем пожаротушения.

Подскажите, пожалуйста, в случае, когда делается гидравлический расчет АУП, совмещенной с внутренним противопожарным водопроводом (ВПВ), нужно ли в точке подсоединения кранов прибавлять дополнительно давление, необходимое у пожарного крана? К примеру, в точке N давление 0,26 МПа, к ней подключается спаренный ПК (по табл. 3 СП 10.13130.2009 Р = 0,1 МПа), надо ли суммировать: 0,26 + 2 × 0,1 = 0,46?

При гидравлическом расчете АУП, совмещенной с внутренним противопожарным водопроводом (ВПВ), в обязательном порядке необходимо учитывать расход пожарных кранов (ПК).

Как правило, проектировщики определяют общий расход по формуле:

Q общ = Q АУП + Q ВПВ.

Например, расчетный расход Q АУП составляет 10 л/с, а при табличном значении количества пожарных кранов для расчета расхода воды – 2 шт. С расходом каждого пожарного ствола 2,5 л/с расход ВПВ принимают 5 л/с. Отсюда Q общ принимается равным 15 л/с, что совершенно неправильно.

Какие ошибки здесь допущены? Как должен учитываться расход ПК и правильно рассчитываться Q общ?

Недопустимо определять расход ВПВ как Q ВПВ = 2,5 × 2 = 5 л/с. Расчет общего расхода ВПВ, не совмещенного с АУП, начинается с определения расхода диктующего прожарного крана в зависимости от высоты помещения, диаметра пожарного запорного клапана пожарного крана (а следовательно, и диаметра пожарного рукава), длины пожарного рукава и диаметра выходного отверстия ручного пожарного ствола (см., например, табл. 3 СП 10.13130.2009).

При ВПВ, совмещенном с АУП, целесообразно найти точку на питающем трубопроводе с давлением близким, но не менее давления, которое требуется, чтобы обеспечить данный расход при выбранных выходном диаметре пожарного ствола, номинальном диаметре пожарного запорного клапана ПК и длине пожарного рукава (подсоединение ПК к распределительному трубопроводу не допускается вследствие того, что его диаметр, как правило, менее DN 50).

Если точка соединения трубопровода пожарного крана выбирается произвольно (в зависимости от геометрического места расположения пожарного крана в помещении), то с учетом требуемого расхода воды для ПК, который можно принять по табл. 3 СП 10.13130.2009, уточняется давление в точке соединения трубопровода ПК к питающему трубопроводу АУП (с учетом потерь давления по длине трубопровода, местных потерь и пьезометрической разницы высот между питающим трубопроводом АУП и ПК). Давление в этой точке, рассчитанное по гидравлической схеме АУП, должно быть не менее, чем давление в этой точке, рассчитанное для ПК, причем с учетом этой разницы в давлениях корректируется расход ПК и, соответственно, общий расход в этой точке.

Если давление в точке соединения трубопровода пожарного крана к питающему трубопроводу АУП, рассчитанное по расходу ПК, больше, чем рассчитанное по гидравлической схеме АУП, то должно быть скорректировано давление диктующего оросителя (в сторону увеличения), чтобы в точке соединения трубопроводов наблюдалось примерное равенство расчетных давлений.

Аналогичным образом определяется точка соединения к питающему трубопроводу АУП трубопровода второго ПК, и определяется суммарный расход Q общ.

Таким образом, в точке соединения питающего трубопровода АУП с трубопроводом ПК складываются не давления , а расход АУП и расход ПК.

Максимальный радиус действия спринклерного оросителя примерно 2 м (площадь 12 м 2). Максимальное расстояние между спринклерными оросителями 4 м. Между кругами орошения образуются области с непонятной интенсивностью орошения. Как определить, обеспечивается ли в этих областях хотя бы 50 %-ная интенсивность (по НПБ 87–2000). Или нужно сокращать расстояние до 2,8 м между оросителями, чтобы этих областей не было?

Согласно ГОСТ Р 51043.2002 (вступивший в действие взамен НПБ 87–2000) круговая площадь орошения должна быть не меньше 12 м 2 (радиус ≈ 2 м), и интенсивность орошения должна соответствовать нормативной в зависимости от группы помещений по СП5.13130.2009. Но, естественно, что орошение не ограничивается орошением толькоплощади в пределах S 12 = 12 м 2 . Истинная площадь орошения составляет S ≈ (1,3–1,7) S 12 , т. е. существенно превышает нормативное значение защищаемой площади.

В зависимости от типа оросителя интенсивность орошения на этой дополнительной площади от каждого оросителя составляет (0,2–0,7) I (от нормативного значения интенсивности орошения I ). Поэтому в центральной зоне между четырьмя оросителями, как правило, интенсивность орошения превышает 50 % от нормативного значения, а иногда может быть и выше этого значения (подробную информацию можно получить из учебно-методического пособия (Мешман Л. И. и др. Автоматические водяные и пенные установки пожаротушения. Проектирование. М.: ВНИИПО, 2009. – 572 с.) или из учебно-методического пособия (Мешман Л. М. и др. Оросители водяных и пенных автоматических установок пожаротушения. М.: ВНИИПО, 2002. – 315 с.).

Поэтому при расстоянии между оросителями 4 м, площадь, защищаемая каждым оросителем, условно принимается S = 16 м 2 . Например, если расчетная площадь АУП для 1-й группы помещений – 60 м 2 , то минимальное расчетное количество оросителей составит 4 шт. (60 м 2: 16 м 2 ≈ 4 шт.); соответственно, для 2-й группы помещений – 8 шт. (120 м 2: 16 м 2 ≈ 8 шт.).

Распределительный трубопровод установки пожаротушения проложен с уклоном 0,005 под плоским перекрытием. Согласно СП5.13130.2009 от колбы оросителя до перекрытия 0,08–0,30 м и, таким образом, независимо от уклона основной магистрали все оросители должны быть расположены в этом интервале. Значит, для установки первого оросителя нужна врезка длиной 100 мм, а для последнего – 600 мм, чтобы они были в линию?

Уклон трубопроводов АУП предусматривается для обеспечения в случае необходимости эвакуации из них воды. Расстояние от центра колбы оросителя до плоскости перекрытия должно быть в пределах от 0,08 до 0,30 м. В исключительных случаях допускается увеличить это расстояние до 0,40 м. Если при уклоне и определенной длине трубопровода расстояние от центра колбы оросителя до плоскости перекрытия превысит 0,40 м, то необходимо в этом месте (в нижней точке) оборудовать дренажный кран для слива воды и поднять трубу вверх таким образом, чтобы расстояние от центра видимой части колбы до перекрытия составило не менее 0,08 м, а далее этот новый участок трубы должен быть проложен с требуемым уклоном.

По желанию заказчика распределительная сеть спринклерной установки на базе системы двойной активации в помещениях кроссовых и серверных не должна быть заполнена водой. Помещения находятся в действующем бизнес-центре и занимают четыре этажа. На каждом этаже ориентировочно по два помещения такого назначения. Вода будет направлена в систему только при условии одновременного срабатывания дымового пожарного извещателя и спринклерного оросителя. Срабатывание только одного оборудования без одновременного срабатывания другого не позволит воде попасть внутрь трубопроводной сети АУП кроссовых и серверных. Возможно ли предусмотреть подобную схему?

Предложенные установки рассмотренны в п. 5.6 СП 5.13130.2009.

В зависимости от требований к быстродействию и исключению ложных срабатываний используют следующие виды спринклерно-дренчерных АУП-СД:

  • водозаполненные АУП-СВД;
  • воздушные АУП-СВзД.

Выбор вида спринклерно-дренчерных АУП-СД обусловлен минимизацией ущерба от последствий ложных или несанкционированных срабатываний АУП:

Водозаполненных АУП-СВД – для помещений, где требуется повышенное быстродействие АУП и допустимы незначительные проливы ОТВ в случае повреждения или ложного срабатывания спринклерных оросителей, – в дежурном режиме питающие и распределительные трубопроводы заполнены водой, а подача ОТВ в защищаемую зону осуществляется только при срабатывании автоматического пожарного извещателя и спринклерного оросителя, включенных по логической схеме «И»;

Воздушных АУП-СВзД (1) – для помещений с положительными и отрицательными температурами, где нежелательны проливы ОТВ в случае повреждения или ложного срабатывания спринклерных оросителей, – в дежурном режиме питающие и распределительные трубопроводы заполнены воздухом под давлением. Заполнение этих трубопроводов огнетушащим веществом происходит только при срабатывании автоматического пожарного извещателя, а подача ОТВ в защищаемую зону осуществляется только при срабатывании автоматического пожарного извещателя и спринклерного оросителя, включенных по логической схеме «И»;

Воздушных АУП-СВзД (2) – для помещений с положительными и отрицательными температурами, где требуется исключить подачу ОТВ в систему трубопроводов из-за ложных срабатываний автоматических пожарных извещателей, а также проливы ОТВ из-за повреждения или ложного срабатывания спринклерных оросителей, – в дежурном режиме питающие и распределительные трубопроводы заполнены воздухом под давлением. Заполнение этих трубопроводов огнетушащим веществом и подача ОТВ в защищаемую зону происходят только при срабатывании автоматического пожарного извещателя и спринклерного оросителя, включенных по логической схеме «И».

Следует учитывать, что для защиты кроссовых и серверных, как правило, используются газовые АУП.

Требуется запроектировать спринклерную установку пожаротушения склада 6-й группы (с высотой складирования до 11 м, высота здания 14 м), на который не распространяется п. 1.3 СП 5.13130. Анализ информации на форумах, позволяет сделать вывод, что можно использовать либо оросители повышенной производительности (ESFR/СОБР), выполняя расчет, руководствуясь их СТУ, либо оросители ТРВ. Что целесообразнее в данном случае?

Проектирование высокостеллажных складов должно осуществляться по СП 241.13130.2015, либо по ВНПБ 40–16 «Автоматические установки водяного пожаротушения «АУП-Гефест». Проектирование. СТО 420541.004», или по СТО 7.3–02–2011 «Установки водяного пожаротушения тонкораспыленной водой с применением распылителей «Бриз ® ». Руководство по проектированию».

Использование спринклерных распылителей тонкораспыленной воды по сравнению со спринклерными оросителями ESFR/СОБР позволяет резко сократить расход воды, однако АУП, оснащенные распылителями, менее эффективны при тушении пожаров в помещениях групп 6 и 7 по СП 5.13130.2009. Окончательный выбор в качестве оросителей ESFR/СОБР или распылителей тонкораспыленной воды определяется технико-экономическим обоснованием, наличием на объекте также соответствующих АУП, квалификацией обслуживающего персонала и т. п.

Имеется холодный высокостеллажный склад. Применяются оросители СОБР. Однако из-за того, что диаметры труб получаются большими, общий объем воздушной секции тоже большой – около 25 м 3 . Возможно ли запроектировать АУП со следующим алгоритмом работы: предусмотреть дренчерный узел управления. Перед узлом управления трубопроводы АУП заполнены водой, после него – воздух без давления. При срабатывании пожарных извещателей ПС узел управления открывается, вода заполняет трубопроводы. Если срабатывание не ложное – при разрушении термочувствительной колбы спринклерного оросителя начинается орошение. У такой схемы следующие преимущества:

  • не нужны компрессоры (сейчас для каждой секции нужен свой компрессор, а редакция СП 5 с одним компрессором еще не принята);
  • не нужны эксгаузтеры. Соответственно, уменьшается стоимость АУП, нет необходимости предусматривать автоматику для управления ими;
  • требование заполнения водой трубопроводной системы за 180 с тоже упрощается. Чувствительность пожарного извещателя выше, и в момент вскрытия термочувствительной колбы трубопроводы будут заполнены полностью или частично.

В то же время в определении воздушно-дренчерных АУП по СП5 присутствует фраза «воздуховоды заполнены воздухом под давлением».

Получается, формально нельзя запроектировать систему без воздушного давления?

Требования нормативных документов не должны препятствовать техническому прогрессу. Если появляются прогрессивные проектные решения, то они могут быть согласованы для применения согласно установленным процедурам.

Использовать дренчерную АУП со спринклерными оросителями вместо воздушной спринклерной АУП вполне возможно, но при этом необходимо корректно определить все плюсы использования данного варианта. Во-первых, потребуется установка пожарной сигнализации с многочисленными пожарными извещателями, которые должны обслуживать специалисты более высокой квалификации. Во-вторых, в трубопроводной системе остается 25 м 3 воздуха. В зависимости от конфигурации распределительной сети и места расположения сработавшего спринклерного оросителя выпуск воздуха через него может произойти через значительное время (более 3 мин – все зависит от сложности распределительной сети АУП и места расположения оросителя).

Как вариант, можно предложить использование дренчерной АУП со спринклерными оросителями и небольшим избыточным давлением в питающих и распределительных трубопроводах. Преимущество по сравнению с рекомендуемой схемой – отсутствие установки пожарной сигнализации с многочисленными пожарными извещателями, недостаток – некоторое снижение быстродействия подачи воды на защищаемый объект. Однако если АУП разбить на несколько независимых секций, то можно добиться существенного быстродействия (см., например, заявку на изобретение: Мешман Л. М. и др. Способ повышения быстродействия спринклерной воздушной установки пожаротушения (варианты) и устройство для его реализации (варианты). МПК A62C 35/00, дата подачи 05.2017).

Как еще один вариант, можно предложить использование дренчерной АУП с использованием спринклерных оросителей с контролем пуска или оросителей, оснащенных устройством контроля пуска и принудительного пуска (см., например, Мешман Л. М. и др. Способ управления воздушной установкой пожаротушения и устройство для его реализации: пат. RU № 2 610 816, A62C 35/00. Опубл. 15.02.2017. Бюл. № 5).

Системы пожаротушения – это неотъемлемая часть безопасности любого объекта. Они бывают автоматическими, автономными или могут приводиться в действие с участием человека. Но всех их объединяет одно назначение и общие функции. Вне зависимости от комплектации они должны обеспечивать безопасность объекта (помещения, здания, отсека и т.д.), поэтому проектирование систем пожаротушения происходит с учетом установленных законодательными и нормативными актами правил. Для этого специалисты делают расчеты и определяют характеристики объекта.

Основы создания и ответственность

На каком этапе необходимо проектирование пожаротушения? Чаще всего такие системы планируются еще перед строительством здания. Для установки в уже существующем объекте создают проект систем по аналогии поступают с пожарной сигнализацией.

В большинстве случаев его разрабатывает проектная организация, но иногда возможны и другие варианты. Решение этого вопроса зависит от сложности поставленной задачи и рисков, связанных с возникновением пожара. Ответственность за проектирование лежит на его разработчике и частично на заказчике.

Утверждение проекта в государственных надзорных органах не требуется, если нет отклонений от него в процессе строительства. В остальных ситуациях необходимо согласование.

Однако на практике заказчики и проектировщики систем автоматического пожаротушения обращаются к государственным надзорным органам для утверждения, чтобы убедиться в соответствии запланированных технических решений с действующими нормами и получить своеобразный аудит перед сдачей объекта в эксплуатацию.

Проект состоит из двух частей – теоретической и графической. В первой описывают выбранное оборудование, материалы и причины для этого. Решения обязательно подкрепляют расчетами. Например, для систем водопенного или водяного пожаротушения вычисляют количество огнетушащего вещества достаточное для ликвидации и локализации пожара.

Чтобы подкрепить проектирование аргументами, производятся расчеты количества элементов системы (модули, агрегаты). Все это является подтверждением эффективности запланированной защиты объекта.

Графическая часть включает планы этажей с указанием размещения оборудования, схемы соединения элементов системы, кабельные проводки и другие коммуникации, в частности для имеет большое значение пожарный водопровод.

Параметры в проектировании

Проектирование установок пожаротушения – во многом индивидуальный процесс, который затрагивает особенности объекта. Перед его созданием определяют:

  1. назначение объекта (общественное, производственное, жилое здание, склад и т.п.);
  2. конструктивные и планировочные особенности здания;
  3. наличие и размещение коммуникаций (электросети, водопровод при необходимости и т.п.);
  4. температура и другие особенности окружающей среды в здании или помещении;
  5. классификация здания по пожарной и взрывопожарной опасности.

Первый пункт особенно важен для проектирования, так как для отдельной категории объектов применяют специальные правила. Кроме того, от назначения здания зависит выбор оборудования и огнетушащего вещества. Порошок не подходит для складов с изделиями из резины (автомобильные покрышки) или дерева. А водой не стоит тушить раскаленный уголь и многие металлы, несмотря на эффективность и популярность этих веществ в других случаях.

Поэтажные планы при проектировании четко указывают на расстановку и количество оборудования. Например, проектирование систем и установок газового пожаротушения всегда предполагает определенное количество модулей для эффективной работы при обнаружении возгорания, задымления.

Если проект разрабатывается до начала строительства объекта, то это во многом упрощает планирование систем пожаротушения.Тогда коммуникации (водопровод, электрические сети) рассчитывают так, чтобы они обеспечивали работу всех элементов.

Если монтаж производится для готового здания или сооружения, то заказчик предоставляет схемы и чертежи существующих коммуникаций для подключения к ним систем водяного, пенного, газового либо .

Вопрос о совместимости затрагивает и наполнение системы. По правилам все элементы должны слаженно работать и это доказывают еще на стадии проектирования. При необходимости замены датчика или другого устройства, которые перестали выпускать и продавать, выбирают аналог, желательно, подтвердить его совместимость в проектной организации.

В помещении замеряют перепады температуры воздуха. Это влияет на выбор вида системы и этапы её проектирования. Иногда от этого зависит выбор огнетушащего вещества, так как не все подходят для тушения при низких температурах, но чаще всего такой показатель определяет тип датчиков и их настройку. Проектирование водяных и пенных автоматических установок пожаротушения учитывает температуру воздуха в помещении при обосновании выбора спринклерных оросителей.

Классификация зданий поможет определить, какие вещества и материалы используются и находятся в помещениях. Этот параметр является дополнением к остальным, влияющим на выбор вида систем пожаротушения и мест их установки на начальных стадиях проектирования.

Особенности выбора здания приводят к применению газового или после обоснования в теоретической части документации.

Главные характеристики систем пожаротушения, которые учитывают при проектировании, можно свести в единый перечень:

  • тип огнетушащего вещества;
  • способ тушения;
  • конструктивное исполнение;
  • способ запуска.

Расчеты в ходе проектирования производятся по нормам и правилам, соответствующим конкретному типу установок и огнетушащего вещества. Для систем пенного и проводят гидравлические испытания согласно эксплуатационной документации.

Тип системы важен для расчетов времени срабатывания и границ защищаемой зоны.Во-первых, это позволяет выяснить эффективность. Во-вторых, узнать, успеют ли эвакуироваться люди из здания или помещения. Известно, что порошковое пожаротушение может принести вред человеческому организму, как и газовое. Расчеты для рассматриваемого помещения принято проводить для наиболее опасных факторов пожара.

Особенности проектирования различных систем

Водяное пожаротушение имеет массу достоинств и широко распространено. В его пользу можно привести проблему других видов систем: после монтажа нагрузка на их элементы значительно увеличивается и не совпадает с расчетами в теоретической части проекта по различным причинам. Тогда приходится вносить изменения в проект, чтобы добиться легальности переоборудования системы.

Однако для это не характерно. Его применение оправдано в помещениях с большим скоплением людей, оно эффективно охлаждает, а стоимость оборудования сравнительно низкая.

Пенное пожаротушение, как и водяное, бывает спринклерного и дренчерного типа, в зависимости от конструктивного исполнения и начала срабатывания после реагирования датчиков либо ручного запуска. Особое внимание при проектировании уделяют форме струи и охвату защищаемой площади.

Необходимо рассчитать оптимальный диаметр трубопровода, чтобы обеспечить воздействие огнетушащего вещества на конструктивные элементы. Отличие пенного от – условия использования и обслуживания (характеристики помещения, материалы и вещества в нем).

Еще один практически универсальный вариант – порошковое пожаротушение. Такие системы требуют тщательных подсчетов количества модулей, которые должны охватить помещение. Полная защита объекта обеспечивается также их корректным размещением, что входит в план проектирования.

РАЗДЕЛ 1. НОРМЫ И ПРАВИЛА ПРОЕКТИРОВАНИЯ ВОДЯНЫХ И ПЕННЫХ АУП
1. ТРАДИЦИОННЫЕ УСТАНОВКИ ВОДЯНОГО И ПЕННОГО ПОЖАРОТУШЕНИЯ
2. ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ АУП СТАЦИОНАРНЫХ ВЫСОТНЫХ СТЕЛЛАЖНЫХ СКЛАДОВ
3. ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ УСТАНОВОК ПОЖАРОТУШЕНИЯ РАСПЫЛЕННОЙ ВОДОЙ
4. ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ РОБОТИЗИРОВАННЫХ УСТАНОВОК ПОЖАРОТУШЕНИЯ И УСТАНОВОК ПОЖАРОТУШЕНИЯ СО СТАЦИОНАРНЫМИ ДИСТАНЦИОННО УПРАВЛЯЕМЫМИ ЛАФЕТНЫМИ СТВОЛАМИ
5. НАСОСНЫЕ СТАНЦИИ
6. ТРЕБОВАНИЯ К РАЗМЕЩЕНИЮ И СОДЕРЖАНИЮ КОМПЛЕКТУЮЩЕГО ОБОРУДОВАНИЯ АУП
7. ТРЕБОВАНИЯ К ВОДОСНАБЖЕНИЮ И ПОДГОТОВКЕ ПЕННОГО РАСТВОРА
8. ТРЕБОВАНИЯ К АВТОМАТИЧЕСКОМУ И ВСПОМОГАТЕЛЬНОМУ ВОДОПИТАТЕЛЯМ
9. ТРЕБОВАНИЯ К ТРУБОПРОВОДАМ
10. ЭЛЕКТРОПИТАНИЕ УСТАНОВОК
11. ЭЛЕКТРОУПРАВЛЕНИЕ И СИГНАЛИЗАЦИЯ
РАЗДЕЛ 2. ПОРЯДОК РАЗРАБОТКИ ЗАДАНИЯ НА ПРОЕКТИРОВАНИЕ АУП
1. ИЗУЧЕНИЕ ОСОБЕННОСТЕЙ ЗАЩИЩАЕМОГО ОБЪЕКТА
2. ОБЩИЕ ПОЛОЖЕНИЯ О ПОРЯДКЕ РАЗРАБОТКИ, СОГЛАСОВАНИЯ И УТВЕРЖДЕНИЯ ЗАДАНИЯ НА ПРОЕКТИРОВАНИЕ
3. ОСНОВНЫЕ ТРЕБОВАНИЯ К АУП
4. ПОРЯДОК ИЗЛОЖЕНИЯ ЗАДАНИЯ НА ПРОЕКТИРОВАНИЕ
5. ПОРЯДОК ОФОРМЛЕНИЯ ЗАДАНИЯ НА ПРОЕКТИРОВАНИЕ
6. ПЕРЕЧЕНЬ ДОКУМЕНТАЦИИ, ПРЕДСТАВЛЯЕМОЙ ОРГАНИЗАЦИЕЙ-РАЗРАБОТЧИКОМ ОРГАНИЗАЦИИ-ЗАКАЗЧИКУ
РАЗДЕЛ III. ПОРЯДОК РАЗРАБОТКИ ПРОЕКТА АУП
1. ОБОСНОВАНИЕ ВЫБОРА АУП
2. СОСТАВ ПРОЕКТНО-СМЕТНОЙ ДОКУМЕНТАЦИИ
3. РАБОЧИЕ ЧЕРТЕЖИ
РАЗДЕЛ IV. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ УСТАНОВОК ВОДЯНОГО И ПЕННОГО ПОЖАРОТУШЕНИЯ
1. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ УСТАНОВОК ВОДЯНОГО И ПЕННОГО (НИЗКОЙ И СРЕДНЕЙ КРАТНОСТИ) ПОЖАРОТУШЕНИЯ
2. ОПРЕДЕЛЕНИЕ УДЕЛЬНОГО РАСХОДА ОРОСИТЕЛЕЙ ДЛЯ СОЗДАНИЯ ВОДЯНЫХ ЗАВЕС
3. НАСОСНЫЕ УСТАНОВКИ
РАЗДЕЛ V. СОГЛАСОВАНИЕ И ОБЩИЕ ПРИНЦИПЫ ЭКСПЕРТИЗЫ ПРОЕКТОВ АУП
1. СОГЛАСОВАНИЕ ПРОЕКТОВ АУП С ОРГАНАМИ ГОСПОЖНАДЗОРА
2. ОБЩИЕ ПРИНЦИПЫ ЭКСПЕРТИЗЫ ПРОЕКТОВ АУП
РАЗДЕЛ VI. НОРМАТИВНЫЕ ДОКУМЕНТЫ, ТРЕБОВАНИЯ КОТОРЫХ ПОДЛЕЖАТ УЧЕТУ ПРИ РАЗРАБОТКЕ ПРОЕКТА НА ВОДЯНЫЕ И ПЕННЫЕ УСТАНОВКИ ПОЖАРОТУШЕНИЯ
ЛИТЕРАТУРА
ПРИЛОЖЕНИЕ 1 ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ПРИМЕНИТЕЛЬНО К ВОДЯНЫМ И ПЕННЫМ АУП
ПРИЛОЖЕНИЕ 2 УСЛОВНЫЕ ГРАФИЧЕСКИЕ ОБОЗНАЧЕНИЯ АУП И ИХ ЭЛЕМЕНТОВ
ПРИЛОЖЕНИЕ 3 ОПРЕДЕЛЕНИЕ УДЕЛЬНОЙ ПОЖАРНОЙ НАГРУЗКИ
ПРИЛОЖЕНИЕ 4 ПЕРЕЧЕНЬ ПРОДУКЦИИ, ПОДЛЕЖАЩЕЙ ОБЯЗАТЕЛЬНОЙ СЕРТИФИКАЦИИ В ОБЛАСТИ ПОЖАРНОЙ БЕЗОПАСНОСТИ (средства обеспечения пожарной безопасности)
ПРИЛОЖЕНИЕ 5 ПРОИЗВОДИТЕЛИ СРЕДСТВ ВОДЯНЫХ И ПЕННЫХ АУП
ПРИЛОЖЕНИЕ 6 ТЕХНИЧЕСКИЕ СРЕДСТВА ВОДЯНЫХ И ПЕННЫХ АУП
ПРИЛОЖЕНИЕ 7 СПРАВОЧНИК БАЗОВЫХ ЦЕН НА ПРОЕКТНЫЕ РАБОТЫ ПО ПРОТИВОПОЖАРНОЙ ЗАЩИТЕ ОБЪЕКТОВ
ПРИЛОЖЕНИЕ 8 ПЕРЕЧЕНЬ ЗДАНИЙ, СООРУЖЕНИЙ, ПОМЕЩЕНИЙ И ОБОРУДОВАНИЯ, ПОДЛЕЖАЩИХ ЗАЩИТЕ АВТОМАТИЧЕСКИМИ УСТАНОВКАМИ ПОЖАРОТУШЕНИЯ
ПРИЛОЖЕНИЕ 9 ПРИМЕР РАСЧЕТА СПРИНКЛЕРНОЙ (ДРЕНЧЕРНОЙ) РАСПРЕДЕЛИТЕЛЬНОЙ СЕТИ ВОДЯНЫХ И ПЕННЫХ АУП
ПРИЛОЖЕНИЕ 10 ПРИМЕР РАБОЧЕГО ПРОЕКТА ВОДЯНОЙ АУП
ПРИЛОЖЕНИЕ 11 ПРИМЕР ТЕХНИЧЕСКОГО ЗАДАНИЯ НА РАЗРАБОТКУ РАБОЧЕГО ПРОЕКТА ВОДЯНОЙ АУП
ПРИЛОЖЕНИЕ 12 ПРИМЕР РАБОЧЕГО ПРОЕКТА ВОДЯНОЙ АУП ПРИРЕЛЬСОВОГО СКЛАДА
СПРАВОЧНЫЙ РАЗДЕЛ РАЗДЕЛ 1. НОРМЫ И ПРАВИЛА ПРОЕКТИРОВАНИЯ ВОДЯНЫХ И ПЕННЫХ АУП
1. ТРАДИЦИОННЫЕ УСТАНОВКИ ВОДЯНОГО И ПЕННОГО ПОЖАРОТУШЕНИЯ
2. ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ АУП СТАЦИОНАРНЫХ ВЫСОТНЫХ СТЕЛЛАЖНЫХ СКЛАДОВ
3. ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ УСТАНОВОК ПОЖАРОТУШЕНИЯ РАСПЫЛЕННОЙ ВОДОЙ
4. ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ РОБОТИЗИРОВАННЫХ УСТАНОВОК ПОЖАРОТУШЕНИЯ И УСТАНОВОК ПОЖАРОТУШЕНИЯ СО СТАЦИОНАРНЫМИ ДИСТАНЦИОННО УПРАВЛЯЕМЫМИ ЛАФЕТНЫМИ СТВОЛАМИ
5. НАСОСНЫЕ СТАНЦИИ
6. ТРЕБОВАНИЯ К РАЗМЕЩЕНИЮ И СОДЕРЖАНИЮ КОМПЛЕКТУЮЩЕГО ОБОРУДОВАНИЯ АУП
7. ТРЕБОВАНИЯ К ВОДОСНАБЖЕНИЮ И ПОДГОТОВКЕ ПЕННОГО РАСТВОРА
8. ТРЕБОВАНИЯ К АВТОМАТИЧЕСКОМУ И ВСПОМОГАТЕЛЬНОМУ ВОДОПИТАТЕЛЯМ
9. ТРЕБОВАНИЯ К ТРУБОПРОВОДАМ
10. ЭЛЕКТРОПИТАНИЕ УСТАНОВОК
11. ЭЛЕКТРОУПРАВЛЕНИЕ И СИГНАЛИЗАЦИЯ
РАЗДЕЛ 2. ПОРЯДОК РАЗРАБОТКИ ЗАДАНИЯ НА ПРОЕКТИРОВАНИЕ АУП
1. ИЗУЧЕНИЕ ОСОБЕННОСТЕЙ ЗАЩИЩАЕМОГО ОБЪЕКТА
2. ОБЩИЕ ПОЛОЖЕНИЯ О ПОРЯДКЕ РАЗРАБОТКИ, СОГЛАСОВАНИЯ И УТВЕРЖДЕНИЯ ЗАДАНИЯ НА ПРОЕКТИРОВАНИЕ
3. ОСНОВНЫЕ ТРЕБОВАНИЯ К АУП
4. ПОРЯДОК ИЗЛОЖЕНИЯ ЗАДАНИЯ НА ПРОЕКТИРОВАНИЕ
5. ПОРЯДОК ОФОРМЛЕНИЯ ЗАДАНИЯ НА ПРОЕКТИРОВАНИЕ
6. ПЕРЕЧЕНЬ ДОКУМЕНТАЦИИ, ПРЕДСТАВЛЯЕМОЙ ОРГАНИЗАЦИЕЙ-РАЗРАБОТЧИКОМ ОРГАНИЗАЦИИ-ЗАКАЗЧИКУ
РАЗДЕЛ III. ПОРЯДОК РАЗРАБОТКИ ПРОЕКТА АУП
1. ОБОСНОВАНИЕ ВЫБОРА АУП
2. СОСТАВ ПРОЕКТНО-СМЕТНОЙ ДОКУМЕНТАЦИИ
3. РАБОЧИЕ ЧЕРТЕЖИ
РАЗДЕЛ IV. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ УСТАНОВОК ВОДЯНОГО И ПЕННОГО ПОЖАРОТУШЕНИЯ
1. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ УСТАНОВОК ВОДЯНОГО И ПЕННОГО (НИЗКОЙ И СРЕДНЕЙ КРАТНОСТИ) ПОЖАРОТУШЕНИЯ
2. ОПРЕДЕЛЕНИЕ УДЕЛЬНОГО РАСХОДА ОРОСИТЕЛЕЙ ДЛЯ СОЗДАНИЯ ВОДЯНЫХ ЗАВЕС
3. НАСОСНЫЕ УСТАНОВКИ
РАЗДЕЛ V. СОГЛАСОВАНИЕ И ОБЩИЕ ПРИНЦИПЫ ЭКСПЕРТИЗЫ ПРОЕКТОВ АУП
1. СОГЛАСОВАНИЕ ПРОЕКТОВ АУП С ОРГАНАМИ ГОСПОЖНАДЗОРА
2. ОБЩИЕ ПРИНЦИПЫ ЭКСПЕРТИЗЫ ПРОЕКТОВ АУП
РАЗДЕЛ VI. НОРМАТИВНЫЕ ДОКУМЕНТЫ, ТРЕБОВАНИЯ КОТОРЫХ ПОДЛЕЖАТ УЧЕТУ ПРИ РАЗРАБОТКЕ ПРОЕКТА НА ВОДЯНЫЕ И ПЕННЫЕ УСТАНОВКИ ПОЖАРОТУШЕНИЯ
ЛИТЕРАТУРА
ПРИЛОЖЕНИЕ 1 ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ПРИМЕНИТЕЛЬНО К ВОДЯНЫМ И ПЕННЫМ АУП
ПРИЛОЖЕНИЕ 2 УСЛОВНЫЕ ГРАФИЧЕСКИЕ ОБОЗНАЧЕНИЯ АУП И ИХ ЭЛЕМЕНТОВ
ПРИЛОЖЕНИЕ 3 ОПРЕДЕЛЕНИЕ УДЕЛЬНОЙ ПОЖАРНОЙ НАГРУЗКИ
ПРИЛОЖЕНИЕ 4 ПЕРЕЧЕНЬ ПРОДУКЦИИ, ПОДЛЕЖАЩЕЙ ОБЯЗАТЕЛЬНОЙ СЕРТИФИКАЦИИ В ОБЛАСТИ ПОЖАРНОЙ БЕЗОПАСНОСТИ (средства обеспечения пожарной безопасности)
ПРИЛОЖЕНИЕ 5 ПРОИЗВОДИТЕЛИ СРЕДСТВ ВОДЯНЫХ И ПЕННЫХ АУП
ПРИЛОЖЕНИЕ 6 ТЕХНИЧЕСКИЕ СРЕДСТВА ВОДЯНЫХ И ПЕННЫХ АУП
ПРИЛОЖЕНИЕ 7 СПРАВОЧНИК БАЗОВЫХ ЦЕН НА ПРОЕКТНЫЕ РАБОТЫ ПО ПРОТИВОПОЖАРНОЙ ЗАЩИТЕ ОБЪЕКТОВ
ПРИЛОЖЕНИЕ 8 ПЕРЕЧЕНЬ ЗДАНИЙ, СООРУЖЕНИЙ, ПОМЕЩЕНИЙ И ОБОРУДОВАНИЯ, ПОДЛЕЖАЩИХ ЗАЩИТЕ АВТОМАТИЧЕСКИМИ УСТАНОВКАМИ ПОЖАРОТУШЕНИЯ
ПРИЛОЖЕНИЕ 9 ПРИМЕР РАСЧЕТА СПРИНКЛЕРНОЙ (ДРЕНЧЕРНОЙ) РАСПРЕДЕЛИТЕЛЬНОЙ СЕТИ ВОДЯНЫХ И ПЕННЫХ АУП
ПРИЛОЖЕНИЕ 10 ПРИМЕР РАБОЧЕГО ПРОЕКТА ВОДЯНОЙ АУП
ПРИЛОЖЕНИЕ 11 ПРИМЕР ТЕХНИЧЕСКОГО ЗАДАНИЯ НА РАЗРАБОТКУ РАБОЧЕГО ПРОЕКТА ВОДЯНОЙ АУП
ПРИЛОЖЕНИЕ 12 ПРИМЕР РАБОЧЕГО ПРОЕКТА ВОДЯНОЙ АУП ПРИРЕЛЬСОВОГО СКЛАДА
СПРАВОЧНЫЙ РАЗДЕЛ

Системы пожаротушения относят к необходимому элементу безопасности того или иного объекта. От правильности проектирования установок пожаротушения зависит дальнейшее функционирование, а значит и степень безопасности защищаемого здания (сооружения). В настоящее время к одним из эффективных установок для борьбы с пожарами относят автоматические системы пожаротушения. Проектирование водяных и пенных автоматических установок пожаротушения производится в четком соответствии с правилами пожарной безопасности.

Составление проекта пожаротушения

Проектирование пожаротушения производится перед началом строительства того или иного здания (сооружения). Проектирование установок пожаротушения в таком случае значительно упрощено – так, отдельные коммуникации (водопровод, электросети) проектируют с расчетом обеспечения функционирования составных элементов. Однако если проект составляется для готового сооружения, то заказчик показывает схематические изображения готовых коммуникационных элементов, а уже по ним и рассчитывается возможность подключения установок водяного или пенного пожаротушения.

Разработку проекта возлагают на проектную организацию, однако возможно решение этого вопроса и другими способами. Ответственность за проект возлагается на организацию-разработчика и в некоторой степени на заказчика.

Составные элементы проекта пожаротушения

Необходимости в утверждении проекта в государственных надзорных органах нет, однако согласование нужно, если было допущено отклонение от проекта в процессе выполнения строительных работ. В проекте, в независимости от сложности и особенностей, выделяют две части – теоретическую и графическую. Первая охватывает такие вопросы как:

  • оборудование, которое выбрано для того или иного объекта;
  • элементы системы;
  • материалы;
  • необходимые расчеты.

Обязательно в этой части должны содержаться определенные расчеты, оправдывающие выбор того или иного оборудования и отдельных элементов. Так, для автоматических системы автоматического водяного или пенного пожаротушения с определенной степенью точности указывают количество огнетушащего вещества, необходимого для ликвидации очага возгорания и тушения пожара.

В графической части проекта должны быть показаны:

  • поэтажные планы, с четким указанием расположения установки и отдельных элементов;
  • схематические изображения совмещения элементов системы;
  • проводки кабелей;
  • размещение коммуникаций (в случае с водяным пожаротушением – пожарного водопровода).

Необходимость проектирования

Проектирование водяных или пенных установок автоматического пожаротушения должно производиться с учетом индивидуальных особенностей объекта (здания или сооружения). Перед началом составления проекта нужно определиться с такими основными моментами как:

  • функциональное предназначение объекта (складские помещения, сооружения жилого типа и другие);
  • конструктивно-планировочные решения;
  • расположение коммуникаций таких как водопровод, электросеть;
  • температурные показатели, уровень влажности в помещениях;
  • категорирование помещений по пожарной и взрывопожарной опасности.

Определенные расчеты в процессе проектирования осуществляются в четком соответствии с правилами и нормами, типичными для разновидности установки и огнетушащего вещества. Для автоматических установок пенного и водяного пожаротушения обязательны гидравлические испытания.

Проектирование автоматических установок водяного и пенного пожаротушения должно уделяться особое внимание. В процессе создания проекта должен быть проработан широкий перечень вопросов, охватывающий оценку пожарной опасности, микроклиматических условий, особенностей конструктивно-планировочного типа и размещения коммуникаций. Разработку проекта систем пожаротушения нужно доверять специализированным проектным организациям, поскольку от правильности и тщательности составленного проекта зависит безопасность объекта, а также жизнь и здоровье людей.