Все о тюнинге авто

Для защиты двигателя от перегрева применяются. Аварийные ситуации в работе асинхронного двигателя и методы защиты. Типы мотор-протекторов Sensata

Среди выпускаемой продукции компании Sensata особое место занимают термостаты, служащие для отключения различных устройств (электродвигателей, обмоток реле и т.д.) от цепей питания при перегрузке по току или при перегреве. Согласно установившейся традиции Sensata называет такие устройства «мотор-протекторами» (motor-protectors), поскольку основное их назначение состоит именно в защите электромоторов. Однако заложенный в них принцип отключения цепи можно использовать также для защиты и других устройств (в этом случае используется термин «термопротектор»). В некоторых случаях мотор-протекторы Sensata можно применять вместо плавких предохранителей. При этом количество их циклов срабатывания исчисляется тысячами, тогда как плавкий предохранитель представляет собой одноразовое устройство.

Отметим, что в русскоязычной литературе мотор-протекторы принято называть просто «термореле», хотя они представляют собой более широкий класс устройств. Поскольку в статье кроме как о мотор-протекторах ни о каких других термореле речи не идет, то в отношении перечисленных ниже семейств мы в равной степени будем использовать оба термина.

Принцип действия

Как и в термостатах серии 1NT, в мотор-протекторах Sensata используется хорошо известное свойство биметаллической пластины — щелчком изгибаться при достижении некоторого критического порога температуры (что происходит благодаря различным температурным коэффициентам расширения металлов, слагающих биметаллический диск), размыкая электрический контакт, по которому протекает ток.

При снижении температуры до безопасного уровня обратное замыкание контактов происходит автоматически у всех семейств мотор-протекторов, описываемых в этой статье, за исключением одного: 3MP Self-Hold, где обратное замыкание происходит принудительно.

Поскольку протекающий ток нагревает термореле, то при заданной температуре окружающей среды можно измерить силу тока, при которой происходит нагревание до температуры размыкания, и использовать мотор-протектор как предохранитель, отключающий цепь при заданном токе (замена плавкого предохранителя).

Типы мотор-протекторов Sensata

Все мотор-протекторы компании Sensata подразделяются на несколько больших семейств:

  • 2MM- низкопрофильные мотор-протекторы, рассчитанные на малые переменные токи. Нормируемое количество циклов срабатывания: 3000 при 250В и 4 (1,5)А. Здесь и далее в аналогичных случаях в круглых скобках указывается значение индуктивного тока. А перед скобками- значение резистивного тока.
  • 7AM- полнопрофильные мотор-протекторы, рассчитанные на переменные и постоянные токи. Нормируемое количество циклов срабатывания составляет 10000 при 20А постоянного тока и 16В. Те же 10000 циклов гарантируются производителем при следующих трех режимах переменного тока: 22А при 120В; 8А при 277В и 4А при 600В.
  • 15AM- полнопрофильные мотор-протекторы с расширенным набором опций (например, больший набор возможных значений внутренних сопротивлений), рассчитанные только на переменные токи. Нормируемое количество циклов срабатывания составляет 10000 при 13 (5)А и 250В переменного тока.
  • 3MP- полнопрофильные мотор-протекторы, рассчитанные на работу с переменным током, с нагревательным элементом, увеличивающим чувствительность термореле. Нормируемые количества циклов срабатывания: 500 циклов при 27,5А@cos1 и 250В; 1000 циклов при 18А@cos0,6 и 250В; 15000 циклов при 18А@cos0,6 и 120В.
  • 3MP Self-Hold- то же, что и 3MP, но со специальной функцией удержания отключения и рассчитанные на работу с переменным током. Нормируемое значение количества циклов срабатывания: 300 циклов при 18А@cos0,6 и 250В.
  • 6AP- полнопрофильные мотор-протекторы с нагревательным элементом, рассчитанные только на работу с постоянным током. Нормируемое количество циклов срабатывания: 30000 при 30А и 15В или те же 30000 циклов при 15А и 30В.

Отметим, что термин «полнопрофильные» мотор-протекторы специалистами компании Sensata не употребляется. Мы ввели его здесь для того, чтобы при рассмотрении описываемых семейств с точки зрения конструктива противопоставить по внешнему виду и массе семейство 2MM-протекторов всем остальным.

Отличительные черты каждого
из семейств мотор-протекторов Sensata

2MM — самый маленький по размеру из описываемых в этой статье типов термореле . Низкопрофильность является его главным достоинством и недостатком одновременно. Небольшая поверхность устройства ограничивает максимальную величину рассеиваемого тепла, что делает прибор менее мощным по сравнению с его полнопрофильными «собратьями». Нормируемая величина токов отключения не превышает 7…8 А, а гарантируемое количество в 3000 циклов задается при и того более низком токе в 4 (1,5) А. Число опций при заказе термореле 2ММ также минимально. Одна из опций касается длины и типа проводного соединения. Это отражено соответствующим образом в структуре партнамбера (см. рис. 1).

Рис. 1.

Вторая — 2ММ-термореле доступны в двух модификациях: с эпоксидным покрытием и с дополнительным изолирующим чехлом. Внешний вид изделия показан на рис. 2. Длина корпуса датчика составляет не более 28 мм, а ширина 5,3 мм.

Рис. 2.

Графики на рис. 3 и 4 предназначены для выбора образцов в качестве первого приближения (для последующих верификационных тестов). Причем на рисунке 4 представлены кривые для 3-х различных биметаллических пластин с тремя различными температурами размыкания.

Рис. 3.

Рис. 4.

Другие технические характеристики 2ММ:

  • Диапазон температур размыкания (конкретная температура указывается заказчиком) 70…160°С с шагом в 5°С;
  • Допуск для температуры размыкания ±10°К;
  • Максимальная температура внешней среды 175°С;
  • Дифференциал не менее 20°К.

Небольшие размеры данного семейства определяют его применение. 2ММ предназначены для защиты от перегрузки по току (в том числе в режиме принудительного останова ротора, иначе называемого режимом заторможенного ротора) двигателей небольшой мощности, главным образом однофазных. Эти мотор-протекторы также используются в маломощных трансформаторах, катушках индуктивности, электромагнитных клапанах (соленоидных клапанах), применяющихся как в промышленности, так и в бытовой технике. В однофазных электродвигателях данный тип термореле можно включать прямо в основную цепь, монтируя его как на обмотку, так и внутрь обмотки (последнее применение возможно именно благодаря небольшим размерам данного типа мотор-протекторов).

По сравнению с 2MM полнопрофильные мотор-протекторы (чертежи с габаритными размерами на все мотор-протекторы читатель может найти на сайте производителя, ссылки на соответствующие страницы даны в конце статьи) рассчитаны на большие значения токов срабатывания и протекающих штатных токов. Эти термореле также включают в цепи переменного тока. Единственное исключение — семейство 7AM, которое можно также включать и в цепи постоянного тока. Для 7АМ гарантированное количество циклов срабатывания, равное 10000, нормируется, во-первых, для одного режима использования на постоянном токе и, во-вторых, для трех различных режимов использования на переменном токе.

7AM являются лидерами рынка в своем классе устройств (см. рис. 5). Длина корпуса этого датчика составляет 20 мм, а ширина 10 мм. Основу прибора составляет откалиброванный биметаллический диск, изготовленный по специальной запатентованной технологии Klixon® и реагирующий как на изменение окружающей температуры, так и на изменение тока, протекающего через устройство.

Рис. 5.

Рисунок 6 предназначен для выбора образцов в качестве первого приближения (для последующих верификационных тестов).

Рис. 6.

Биметаллический диск крепится посредством приваренной шпонки. Напротив него находится неподвижный контакт. Нижняя часть корпуса отделена от верхней при помощи изолирующей прокладки, которая одновременно герметизирует собой зазор между двумя половинками корпуса. От термостата идет провод, длина которого определяется заказчиком, что отражено в структуре партнамбера (см. рис. 7). Провод оканчивается разъемом под клемму либо другими предусмотренными для данного мотор-протектора стандартными типами контактов. Компания Sensata рекомендует применять 7АМ в электродвигателях с экранированным полюсом, конденсаторных двигателях, балластах люминесцентных и разрядных ламп высокой интенсивности, трансформаторах, встраиваемых светильниках, портативных батарейных источниках питания, пылесосах, вспомогательных электродвигателях, соленоидах и материнских платах персональных компьютеров. Детальная расшифровка партнамбера представлена на рис. 7.

Рис. 7.

На рис. 6 и рис. 8 представлены два основных семейства кривых, которые определяют режим работы термореле 7АМ. Допустим, температура окружающей среды составляет 25°С, мы хотим, чтобы размыкание цепи происходило при 100°С (разница между температурой размыкания и температурой окружающей среды в 75°С), а ток размыкания составлял 15 А, тогда, судя по рис. 6, мы должны выбрать вариант с биметаллическим диском с низким внутренним сопротивлением. Если мы ориентируемся на ток размыкания в 8 А (при оговоренных только что условиях), то мы должны выбрать уже вариант термореле с высоким внутренним сопротивлением биметаллического диска.

Рис. 8.

График на рис. 8 предназначен для выбора образцов в качестве первого приближения (для последующих верификационных тестов). Здесь представлены кривые для четырех различных вариантов биметаллических дисков, различающихся между собой значениями электрического сопротивления. В структуре партнамбера (рис. 7) сопротивления биметаллических дисков косвенным образом отражены в трехзначных цифровых кодах, следующих непосредственно за корневым обозначением серии: 7AM. Два из них (316 и 020) соответствуют биметаллическому диску с низким сопротивлением (для их размыкания и нагрева требуется больший ток), а два других (219 и 201) — биметаллическому диску с высоким сопротивлением (он нагревается сильнее и при меньших токах).

15AM — один из наиболее массовых мотор-протекторов, выпускаемых компанией Sensata (лидер продаж на европейском рынке защиты электродвигателей переменного тока). Термореле 15AM используются для защиты электродвигателей как промышленного, так и бытового применения. Поскольку корпус этих мотор-протекторов сделан из металла, может возникнуть необходимость изолировать его от других металлических частей устройства, в котором это термореле применяется. Для этого 15АМ может поставляться заказчику уже в изолирующем чехле (литера «А» в партнамбере). 15АМ, в отличие от 7АМ, рассчитаны только на переменный ток и выпускаются с шестью различными вариантами внутреннего сопротивления (а не с двумя, как в случае 2ММ). А значит, можно точнее подобрать режим работы устройства. С другой стороны, 7АМ выдерживают пропитку катушки, а 15АМ — нет. Кроме того, у мотор-протекторов 7АМ провода могут подводиться не только с одной, но и с разных сторон корпуса, а в 15АМ такой модификации нет. Внешне 15АМ похож на 7АМ. Кроме того, 15АМ имеют похожие графики зависимостей, представленных для 7АМ на рис. 6 и рис. 8. Их легко можно найти на сайте производителя. по приведенной в конце этой статьи ссылке на техническое описание семейства 15АМ. Там же приведена структура партнамбера 15АМ.

15AM используются для защиты моторов и насосов моющих (в том числе и посудомоечных) машин, сушильных аппаратов, пылесосов, вентиляторов, зарядных устройств для аккумуляторов и микроволновых печей.

Другие технические характеристики 15АМ:

  • Диапазон температур размыкания (конкретная температура указывается заказчиком) 65…170°С с шагом в 5°С;
  • Максимальная температура внешней среды 180°С;
  • Максимальная температура выводов 185°К.

Серия 3MP отличается тем, что внутри корпуса рядом с биметаллическим диском находится еще и S-образный нагревательный элемент, который обеспечивает лучшую чувствительность (откликаемость) данного устройства при перегреве. Для этого достаточно сравнить кривые зависимости времени размыкания первого цикла при превышении порогового тока для 3MP и 7AM: при меньших значениях тока для 3MP-термореле время срабатывания меньше. Благодаря указанному нагревательному элементу биметаллический диск разогревается быстрее. Однако, это приводит к заметному уменьшению гарантированного количества циклов срабатывания.

Компания Sensata специально сертифицировала 3МР (рис. 9) как устройство, обеспечивающее размыкание электрической цепи при превышении заданного тока и пороговой температуры, что позволяет использовать данную серию в качестве недорогого и эффективного средства защиты тороидальных трансформаторов от перегрузок. Другие применения (они также определяются повышенной чувствительностью данного типа мотор-протекторов): защита при перегреве электродвигателей моющих машин, сушилок, посудомоечных машин и пылесосов.

Рис. 9.

Предполагается, что во всех защищаемых устройствах должно использоваться напряжение 120…250 В переменного тока.

Рис. 10.

На рис. 11. представлены кривые для двух различных значений сопротивлений биметаллического диска.

Рис. 11.

Опционально мотор-протекторы данного семейства могут поставляться в специальном изолирующем чехле, сделанном из мэйлара.

Общая структура партнамбера для 3MP отсутствует, и на сегодняшний день эти устройства вначале поставляются заказчику в качестве опытных образцов, изготовленных на основании его требований. Партнамбер формируется производителем в зависимости от каждого конкретного случая.

Другие технические характеристики 3МР:

  • Допуск для температуры размыкания ±5°К;
  • Максимальная температура внешней среды (Тразм + 20)°С;

3MP Self-Hold (мотор-протектор с удержанием отключения) — по сути, тот же мотор-протектор, что и ЗMP, но возвращающийся к исходному состоянию только через некоторое время после ручного отключения цепи питания. Подчеркнем, что речь идет именно о принудительном отключении внешней цепи. Это возможно благодаря тому, что помимо S-образного нагревателя, увеличивающего чувствительность, здесь используется еще один тип нагревательного элемента — PTC-элемент (от англ. Positive Temperature Coefficient ). Он монтируется непосредственно на корпус 3MP и крепится к нему металлической скобой (рис. 12). РТС-элемент блокирует характерное для обычных нормально-замкнутых (open-on-rise) биметаллических термостатов самопроизвольное замыкание контактов при понижении температуры обратно до точки нижнего порога срабатывания. Когда основная цепь размыкается, ток начинает течь параллельно через нагревательный PTC-элемент, обладающий большим сопротивлением.

Рис. 12.

Чтобы биметаллическая пластина остыла и разомкнула цепь, а потом снова замкнула ее, необходимо, чтобы сначала остыл этот нагревательный элемент. В данном случаи переводить термин «Self-Hold» как «самовозврат к исходному состоянию» неправильно. Как раз наоборот, возврат данного термореле к исходному состоянию происходит принудительно, т.е. путем отключения внешней цепи питания. Способность отключаться автоматически (если что-то не так) и включаться назад только принудительно как раз и определяют спектр применения мотор-протекторов семейства 3MP Self-Hold как в индустриальном, так и в бытовом оборудовании: моечные машины, пылесосы, цепные пилы, газонокосилки, насосы. При этом защищаемые электродвигатели должны быть рассчитаны на переменный ток с напряжением питания 120…250 В. Однако усложнение принципа работы данного устройства (появление еще одного нагревательного элемента) приводит к дальнейшему уменьшению гарантированного числа циклов срабатывания до 300. Несмотря на то что внешний вид 3MP Self-Hold сильно отличается от 3МР, мотор-протекторы 3MP Self-Hold имеют аналогичные кривые основных рабочих зависимостей (рис. 10 и 11). Партнамбер же в каждом конкретном случаи вырабатывается производителем для заказчика на основе детального описания режимов работы.

Другие технические характеристики 3МР Self-Hold:

  • Диапазон температур размыкания (конкретная температура указывается заказчиком) 80…170°С с шагом в 5°К;
  • Допуск для температуры размыкания ±8°К;
  • Температура окружающей среды, при которой гарантируется стабильность удержания отключения (при обратном падении температуры окружающей среды ниже температуры размыкания) 0°С;
  • Максимально допустимая температура (в течение 5 минут) 200°С;
  • Максимальная температура внешней среды Тразм + 20°С.

6AP рассчитаны строго на использование на постоянном токе. По своему внутреннему устройству 6AP являются почти точной копией мотор-протекторов 3MP, которые рассчитаны на работу на переменном токе. У них также рядом с биметаллическим диском находится S-образный нагревательный элемент, который повышает чувствительность данного элемента, уменьшая величину тока размыкания и время отклика.

Кривые зависимостей максимального тока размыкания от температуры окружающей среды и зависимости времени первого размыкания от силы тока очень близки к аналогичным кривым для 3МР (рис. 10, 11), поэтому мы их здесь не приводим, отсылая читателя к соответствующему техническому описанию.

Другие технические характеристики 6АР:

  • Диапазон температур размыкания (конкретная температура указывается заказчиком) 100…170°С с шагом в 5°К;
  • Допуск для температуры размыкания ±5°К;
  • Максимально допустимая температура (в течение 5 минут) 200°С;
  • Максимальная температура внешней среды 20°С;
  • Временная задержка 4…10 сек при температуре окружающей среды 25°С.

Возможность пропитки

Для некоторых применений требуется возможность пропитки индуктивной катушки, которую надо защитить от перегрева и перегрузки по току при помощи термореле. Из описываемых в этой статье термореле для этих целей подходит только серия 7AM, т.к. изолирующая прокладка, соединяющая две половинки корпуса мотор-протекторов данного типа, специально рассчитана на пропитку.

Выбор мотор-протектора Sensata
для конкретного применения

В простых случаях заказчик сможет сам подобрать нужный мотор-протектор для своего применения, а также правильно заказать нужный партнамбер изделия. Материала, представленного в данной статье и технических описаний с сайта компании Sensata вполне достаточно. Например, самостоятельный выбор легко сделать, когда речь идет о применении мотор-протекторов серии 2ММ для стандартных приложений.

В более сложных случаях для заказа необходима консультация инженеров Sensata. В какой форме ее можно получить, и что для этого необходимо сделать — зависит от конкретных технических требований. Иногда заказчику необходимо просто заполнить стандартную анкету (как в случае с серией 3МР), и технические специалисты Sensata сами посоветуют, какой мотор-протектор больше подходит для данных условий применения. В любом случаи технические специалисты компании Sensata помогут заказчику сделать правильный предварительный выбор образцов для последующего тестирования (проведения верификационных тестов и выбора наиболее подходящего из нескольких близких по характеристикам образцов).

Сложность конструкции тепловых реле к пускателям электродвигателей, недостаточная надежность систем защиты на их основе, привели к созданию тепловой защиты, реагирующей непосредственно на температуру обмоток электродвигателя. При этом датчики температуры устанавливаются на обмотке двигателя. Другими словами, осуществляется непосредственный контроль измерения нагрева двигателя. Прямая защита двигателя через контроль температуры обмотки даже при тяжелейших условиях окружающей среды обеспечивает полную защиту двигателя, оснащенного температурными датчиками с положительным коэффициентом сопротивления (PTC). Температурные датчики PTC встроены в обмотки электродвигателя (укладываются в обмотку двигателя изготовителем двигателей).

Термочувствительные защитные устройства: термисторы, позисторы

В качестве датчиков температуры получили применение термисторы и позисторы (РТС – резисторы) - полупроводниковые резисторы, изменяющие свое сопротивление от температуры. Термисторы представляют собой полупроводниковые резисторы с большим отрицательным ТСК. При увеличении температуры сопротивление термистора уменьшается, что используется для схемы отключения двигателя. Для увеличения крутизны зависимости сопротивления от температуры, термисторы, наклеенные на три фазы, включаются параллельно (рисунок 1).

Рисунок 1 – Зависимость сопротивления позисторов и термисторов от температуры: а – последовательное соединение позисторов; б – параллельное соединение термисторов

Позисторы являются нелинейными резисторами с положительным ТСК. При достижении определенной температуры сопротивление позистора скачкообразно увеличивается на несколько порядков.

Для усиления этого эффекта позисторы разных фаз соединяются последовательно. Характеристика позисторов показана на рисунке.

Защита с помощью позистоpoв является более совершенной. В зависимости от класса изоляции обмоток двигателя берутся позисторы на температуру срабатывания =105, 115, 130, 145 и 160 . Эта температура называется классификационной. Позистор резко меняет сопротивление при температура за время не более 12 с. При сопротивление трёх последовательно включенных позисторов должно быть не более 1650 Ом, при температуре их сопротивление должно быть не менее 4000 Ом.

Гарантийный срок службы позисторов 20000 ч. Конструктивно позистор представляет собой диск диаметром 3.5 мм и толщиной 1 мм, покрытый кремне-органической эмалью, создающей необходимую влагостойкость и электрическую прочность изоляции.

Рассмотрим схему позисторной защиты, показанную на рисунке 2.

К контактам 1, 2 схемы (рисунок 2, а) подключаются позисторы, установленные на всех трёх фазах двигателя (рисунок 2, б). Транзисторы VТ1, VT2 включены по схеме триггера Шмидта и работают в ключевом режиме. В цепь коллектора транзистора VT3 оконечного каскада включено выходное реле К, которое подает сигнал на обмотку пускателя электродвигателя.

При нормальной температуре обмотки двигателя и связанных с ним позисторов сопротивление последних мало. Сопротивление между точками 1-2 схемы также мало, транзистор VT1 закрыт (на базе малый отрицательный потенциал), транзистор VТ2 открьт (большой потенциал). Отрицательный потенциал на коллекторе транзисторе VT3 мал, и он закрыт. При этом ток в обмотке реле К недостаточен для его срабатывания.

При нагреве обмотки двигателя сопротивление позисторов увеличивается, и при определенном значении этого сопротивления отрицательный потенциал точки 3 достигает напряжения срабатывания триггера. Релейный режим триггера обеспечивается эммитерной обратной связью (сопротивление в цепи эммитера VТ1) и коллекторной обратной связью между коллектором VT2 и базой VT1. При срабатывании триггера VТ2 закрывается, а VT3 - открывается. Срабатывает реле К, замыкая цепи сигнализации и размыкая цепь электромагнита пускателя, после чего обмотка статора отключается от напряжения сети, двигатель останавливается.

Рисунок 2 – Аппарат позисторной защиты с ручным возвратом: а – принципиальная схема; б – схема подключения к двигателю

После охлаждения двигателя его пуск возможен после нажатия кнопки «возврат», при котором триггер возвращается в начальное положение.

В современных электродвигателях позисторы защиты устанавливаются на лобовой части обмоток двигателя. В двигателях прежних разработок позисторы можно приклеивать к лобовой части обмоток.

Достоинства и недостатки термисторной (позисторной) защиты

  • Термочувствительная защита электродвигателей предпочтительней в тех случаях, когда по току невозможно определить с достаточной точностью температуру электродвигателя. Это касается, прежде всего, электродвигателей с продолжительным периодом запуска, частыми операциями включения и отключения (повторно-кратковременный режим работы) или двигателей с регулируемым числом оборотов (при помощи преобразователей частоты). Термисторная защита эффективна также при сильном загрязнении электродвигателей или выходе из строя системы принудительного охлаждения.
  • Термисторная защита эффективна также при сильном загрязнении двигателей или выходе из строя принудительного охлаждения. Следующей областью применения термисторной защиты является температурный контроль в трансформаторах, жидкостях и подшипниках для их защиты от перегрева.
  • Недостатками термисторной защиты является то, что с термисторами или позисторами выпускаются далеко не все типы электродвигателей. Это особенно касается электродвигателей отечественного производства. Термисторы и позисторы могут устанавливаться в электродвигатели только в условиях стационарных мастерских. Температурная характеристика термистора достаточно инерционна и сильно зависит от температуры окружающей среды и от условий эксплуатации самого электродвигателя.
  • Термисторная защита требует наличия специального электронного блока: термисторного устройства защиты электродвигателей, теплового или электронного реле перегрузки, в которых находятся блоки настройки и регулировки, а также выходные электромагнитные реле, служащие для отключения катушки пускателя или электромагнитного расцепителя.

Виды термисторных реле различных производителей:

Реле термисторной защиты двигателя ELCO (Чехия)

  • контролирует температуру обмотки электродвигателя в температ. интервале, данном сопротивл. PTC термистора фиксированный настроенный уровень коммутации
  • в качестве считывающего элемента применяетсчя термистор PTC встроенный в обмотку электродвигателя его производителем, возможно использование внешнего PTC сенсора
  • функция ПАМЯТЬ - реле в случае ошибки блокируется до момента вмешательства персонала (наж. кнопки RESET)
    RESET ошибочного состояния:
    a) кнопкой на передней панели
    b) внешним контактом (на расстоянии по двум проводам)
  • функция контроля короткого замыкани или отключения сенсора, состояние нарушения сенсора указывает мигающий красный светодиодный индикатор
  • выходной контакт 2x переключ. 8 A / 250 V AC1
  • состояние превышение температуры обмотки двигателя указывает светящийся красный светодиодный индикатор
  • универсальное напряжение питания AC/ DC 24 - 240 V
  • клеммы сенсора не изолированы гальванически, но их можно замкнуть с клеммой PE без поломки устройства, в случае питания от сети должен быть подключен нейтраль на клемму A2

Реле термисторной защиты электродвигателя (МЕАНДР, Россия)


  • контролирует температуру двигателей, оснащенные позисторами (термисторы с положительным температурным коэффициентом - РТС резисторы), встроенные в обмотку двигателя (производителем).
  • коммутируемый ток 5А/250В (пиковый 16А), контакты реле 1з+1р
  • индикация рабочих состояний:
  • (напряжение питания, срабатывание реле, перегрев двигателя, КЗ датчиков)
  • напряжение питания АС 220, 100, 380 (по исполнениям)

Реле контроля температуры двигателя 230VAC (PTC), 1 CO, TELE Серия ENYA (Австрия)


  • <1,5kΩ клеммы T1-T2 или T1-T3
  • напряжений питания 230V AC
  • максимальный коммутируемый ток 250V, 5A AC (1 перекидной)

Реле контроля температуры двигателя (PTC), 2ПК (требуется модуль TR2) TELE Серия GAMMA (Австрия)

  • контролируемая величина PTC (контр. температуры двигателя на повышение) от 6 PTC датчиков
  • диапазон измерения общее сопр. холодн. <1,5kΩ клеммы T1-T2
  • диапазон напряжений питания спомощью модуля питания TR2 или SNT2 * (устанавливается в реле)
  • напряжений питания 230V AC
  • максимальный коммутируемый ток 250V, 5A AC (2 перекидных)

Реле термисторной защиты двигателя F&F ЕвроАвтоматика (Белоруссия)


  • контроль температуры электродвигателей, генераторов, трансформаторов и защита их от перегрева
  • датчики РТС устанавливаются в обмотках электродвигателя производителем и в комплект не входят (термисторы РТС соединенные последовательно от 1 до 6 штук)
  • напряжение питания 230V AC и 24V AC/DC
  • максимальный комутируемый ток 16А, 1 переключающий контакт
  • контроль КЗ в цепи термисторных датчиков
  • с ростом температуры электродвигателя растет сопротивление цепи термисторных датчиков, при достижении более 3000 Ом питание отключается (реле разрывает цепь питания катушки контактора), включение происходит автоматически при снижении температуры и соответсвенно сопротивления до 1800 Ом.

Реле контроля температуры двигателя MTR01, MTR02 BMR (Чехия)

  • Реле контролирует температуру обмотки электрического двигателя. Принцип действия основан на измерении сопротивления термистора, встроенного в двигатель.
  • Устройство также контролирует короткое замыкание или пропадание фазы. Реле имеет один выходной перекидной контакт на ток 8 А.
  • Модификация MTR01 24V/ MTR02 24V предназначена для напряжения питания 24 В. Остальные параметры.
  • MTR02 с гальванической изоляцией
  • Сопротивление PTC в раб. режиме 50 Ω < PTC < 3,3 кΩ
  • Сопротивление PTC в авар. режиме PTC > 3,3кΩ или PTC < 50Ω
  • Отключение аварийного режима PTC < 1,8 кΩ + RESET
  • Номинальный ток 8 A (15А - пиковый ток), 1 перекидной контакт

Реле контроля температуры двигателя BTR-12E BTR Electronic Systems, "METZ CONNECT" (Германия)


  • реле термистор применяется для защиты моторов от термических перегрузок, возникающих при механических перегрузках в приводах или при использовании электродвигателей под перенапряжением. Для регистрации температуры применяется РТС = сопротивление с позитивным температурным коэффициентом, которые позиционируются в месте наибольшего нагрева.
  • выпускается с памятью ошибки и без ЗУ (запоминающее устройство)
  • напряжение питания 230V AC / 24V AC/DC
  • предельно допустимый ток контактов 6А (1 или 2 переключающих контакта)

Реле термической защиты Grundfos MS 220 C Grundfos/Ziehl (Германия)


  • Реле Grundfos MS 220C предназначено для преобразования термисторного сигнала в релейный и передачи его на пускатель в насосах с мощностью двигателя более 3.0 кВт.
  • напряжение питания AC/DC 24 - 240V (и др. в зависимости от исполнения 110,400V)
  • 1 CO, ток контактов 6А

Реле контроля температуры двигателя серии и Finder (Италия)

Термисторное реле определения температуры для промышленного применения.

Реле Finder термисторной защиты двигателя

  • 1 нормально разомкнутый контакт, без памяти отказов

Реле Finder термисторной защиты двигателя (с памятью)

  • Термисторное реле с памятью отказов
  • 2 перекидных контакта
  • Питание 24 В переменного/постоянного тока или 230 В переменного тока
  • Защита от перегрузок в соответствии с EN 60204-7-3
  • Положительная предохранительная логическая схема размыкает контакт, если значения измерений выходят за пределы приемлемого диапазона
  • Индикация состояния с помощью светодиода
  • Определение температуры с положительным температурным коэффициентом (PTC)
  • Память отказов выбирается переключателем
  • Выявление короткого замыкания с помощью PTC
  • Выявление обрыва провода с помощью PTC

Асинхронный двигатель является наиболее надёжным из всех электродвигателей. Он просто устроен, поэтому при правильной эксплуатации может прослужить очень долго. Но чтобы это произошло, потребуется защита от тех или иных проблем, которые могут сократить срок его службы. Если случается аварийный режим необходимо своевременно и быстро отключить электродвигатель, чтобы авария не получила разрушительного развития.

Наиболее распространёнными аварийными ситуациями и соответствующими им видами защиты являются:

  • Короткие замыкания. В такой ситуации превышение заданных величин токов в обмотках должно вызвать срабатывание защиты, которая выполнит отключение от сети.
  • Перегрузка, в результате которой температура всего движка увеличивается.
  • Проблемы с напряжением, которое либо уменьшается, либо пропадает.
  • Исчезновение напряжения на одной из фаз.

В схемах защиты используются плавкие предохранители , реле и магнитные пускатели с автоматическими выключателями . Схема может быть построена таким образом, что будет выполняться сразу несколько видов защиты асинхронного двигателя. Например, могут быть использованы автоматические выключатели с коммутациями и при перегрузках, и при коротких замыканиях. Плавкие предохранители имеют одноразовое действие и требуют вмешательства оператора для замены.

Реле и магнитные пускатели срабатывают многократно, но могут отличаться по способу восстановления исходного состояния. Для них возможен либо автоматический самовозврат, либо установка вручную. Защиту надо выбирать, основываясь на:

  • предназначении привода, в котором работает асинхронный двигатель;
  • электромеханических параметрах привода;
  • условиях окружающей среды;
  • возможности обслуживания персоналом.
  • Главными качествами защиты должна быть простота в эксплуатации и надёжность.

Любой асинхронный двигатель должен иметь защиту от коротких замыканий. При этом она должна быть спроектирована и настроена с учётом тока пуска и торможения, которые могут превышать номинальный ток почти в десять раз. Но необходимо учитывать и возможность замыканий в обмотке движка в разных местах. При таких ситуациях защитное срабатывание должно произойти при величине тока меньшей, чем при пуске асинхронного двигателя. Поскольку такие требования противоречат друг другу защиту приходится делать с задержкой отключения. Если за это время ток, который двигатель потребляет из сети, существенно увеличится, она сработает.

Требования к защите при коротких замыканиях в асинхронных двигателях заложены в ПУЭ, которые требуют следующее (показано на изображении ниже).

  • Место установки – перед зажимами движка на ответвлении к нему.
  • Надёжное отключение при коротких замыканиях на его зажимах.

Точки на изображении:

  • К1 – однофазное замыкание на землю в сетях с заземлением нейтрали;
  • К2 – двухфазное замыкание;
  • К3 – трёхфазное короткое замыкание.

Ток перегрузки движка надо учитывать только в тех приводах, в которых возможны нарушения нормального технологического процесса с большими внешними усилиями, приложенными к валу. При этом надо учитывать перегрузочную способность электродвигателя. Если защита от перегрузки срабатывает слишком часто, вероятнее всего то, что мощность движка не соответствует назначению. В таких случаях недопустимы ложные срабатывания, которые устраняются правильным выбором и качественной регулировкой компонентов защиты.

Короткие замыкания и защита от перегрузок

Простейшая защита от замыканий содержит только плавкие предохранители. Они применяются в диапазоне мощностей двигателей до 100 кВт. Однако при их использование возможно перегорание не всех трёх предохранителей. Поэтому движок может искусственно оказаться с одной или двумя отключенными фазными обмотками. В зависимости от назначения электропривода существуют разные критерии выбора предохранителей.

Если у привода нагрузка вентиляторного типа, для которой характерен лёгкий пуск, номинальный ток плавкой вставки выбирается не менее 40% от величины пускового тока. Этот критерий применим для металлорежущих станков, вентиляторов, насосов и т.п. у которых переходный процесс длится от двух до пяти секунд. Если время переходного процесса более длительное от десяти до двадцати секунд номинальный ток плавкой вставки должен быть не менее 50% от величины пускового тока. Этот критерий применим для приводов с валом заторможенных нагрузкой. К ним можно отнести дробилки, центрифуги, шаровые мельницы.

Если имеется группа из нескольких электродвигателей, предохранители ставятся на каждый из них и на распределительный щит. На нём в каждой фазе устанавливается предохранитель с номинальным током равным сумме номинальных токов предохранителей всех движков. Если величина пускового тока не известна, а мощность Р асинхронного двигателя менее 100 кВт, можно выбрать приблизительное значение номинального тока I предохранителя таким способом:

  • при напряжении 500 Вольт I =4,5Р ;
  • при напряжении 380 Вольт I =6Р ;
  • при напряжении 220 Вольт I =10,5Р .

Для более точного срабатывания и для всего диапазона мощностей асинхронных двигателей применяются схемы защиты с реле. Такие схемы позволяют учесть токи пуска и торможения и не реагировать на них. Срабатывание реле приводит к выключению магнитного пускателя и обесточиванию двигателя. Эти так называемые «максимальные» реле в зависимости от конструкции имеют катушку, рассчитанную на токи от десятых долей Ампера до сотен Ампер, а так же контакты, отключающие ток в катушке магнитного пускателя.

Погрешность их срабатывания обычно не превышает десяти процентов. Возврат в исходное состояние конструктивно наиболее часто сделан вручную. Типовая схема защиты показана на изображении. РМ – обозначения максимальных реле, Л – обозначение магнитного пускателя.

Максимальные реле также применяются и для защиты от перегрузки. Но при этом в схему вводится реле времени, которое позволяет сделать настройку её без учёта пусковых токов.

Тепловая защита

Тепловое реле является альтернативным способом защиты электродвигателя с определённой инерцией срабатывания. Принцип действия основан на использовании биметаллической пластины, которая нагревается током обмоток двигателя. Деформация пластины приводит к срабатыванию контактов, необходимых для отключения движка.

Надёжность такой защиты зависит от подобия тепловых процессов в реле и в двигателе. Такое возможно только при достаточно длительном перерыве между включениями и выключениями движка. Условия окружающей среды для двигателя и для элементов тепловой защиты должны быть одинаковыми.

Скорость срабатывания тепловых реле тем меньше, чем больше ток, протекающий через нагревательные элементы или же саму пластину в зависимости от конструкции. При больших значениях токов в обмотках асинхронного двигателя подключение выполняется с использованием трансформаторов тока. Существуют модели магнитных пускателей со встроенными в них тепловыми реле.

Основными электрическими параметрами являются

  • номинальное напряжение. Это максимальное напряжение в сети допустимое для использования реле.
  • Номинальный ток, при котором реле работает длительно и не срабатывает при этом.

Тепловая защита не способна реагировать на токи короткого замыкания и недопустимые кратковременные перегрузки. Поэтому её надо использовать совместно хотя бы с плавкими предохранителями.

Более совершенной разновидностью защиты электродвигателя от недопустимого нагрева является схема с использованием специального датчика тепла. Такой тепловой сенсор располагается на самом движке в том или ином месте. Некоторые модели двигателей имеют встроенный биметаллический сенсор – контакт, подключаемый к защите.

Полностью нагруженный асинхронный двигатель, работающий при пониженном напряжении, быстро нагревается. Если в нём есть встроенный тепловой сенсор, сработает тепловая защита. Если такового нет, необходима защита от понижения напряжения. Для этих целей служат реле, которые срабатывают при снижении напряжения и подают сигнал на отключение движка. На схеме ниже это РН .

Восстановление исходного состояния защиты обычно выполняется вручную или автоматически, но с задержкой во времени для каждого двигателя при их группе. Иначе одновременный групповой запуск после восстановления опять-таки может вызвать повторное понижение напряжения в сети и новое отключение.

Специальная защита от пропадания фазы, то есть от работы только на двух фазах ПУЭ предусматривает только в таких приводах, где возможны неприемлемые по своей тяжести последствия. Экономически целесообразно не изготовление и установка такой защиты, а ликвидация причин, приводящих к такому режиму работы.

Самыми последними техническими решениями в построении защиты электродвигателей являются автоматические выключатели с воздушным гашением дуги. Некоторые модели совмещают в себе возможности рубильника, контактора, максимального и теплового реле и выполняют соответствующие защитные функции. В таком автомате контакты размыкаются мощной взведенной пружиной. Освобождение её происходит в зависимости от типа исполнительного элемента — электромагнитного или теплового.

Асинхронный однофазный двигатель

В рубрике «Общее» на сайте «Насосы и принадлежности» рассмотрим эксплуатацию электрических двигателей. В процессе эксплуатации электродвигателей могут возникать различные неисправности. Мы будем рассматривать электродвигатели, которые эксплуатируются с насосным оборудованием. Очень важно заранее предусмотреть все возможные сбои и как можно надежнее защитить оборудование от сбоев. Перечень причин, которые могут привести к отказу оборудования, включает: качество электроснабжения, качество монтажа, условия эксплуатации. Качество электроснабжения: повышенное или пониженное напряжение, скачки напряжения, обрыв фазы.

Качество монтажа: неправильный или некачественный монтаж.

Условия эксплуатации: недостаточное охлаждение двигателя (обдув), высокая температура окружающей среды, пониженное атмосферное давление (работа на большой высоте над уровнем моря), высокая температура перекачиваемой жидкости, слишком большая вязкость перекачиваемой жидкости, частые включения/выключения электродвигателя, заклинивание ротора.

Число пусков в час

Очень часто в технических характеристиках к насосному оборудованию присутствует такой параметр, как количество пусков в час. Необходимость контролировать этот параметр заключается в том, что каждый раз, когда производится запуск электродвигателя, происходит пяти-семи кратное превышение номинального рабочего тока. Высокие пусковые токи нагревают обмотки статора двигателя. Если электродвигатель не успевает остывать из-за частых пусков, то это может привести к выходу его из строя или сокращению срока службы изоляции (пробою изоляции обмоток). Количество пусков, которое может происходить в течение часа, рассчитывает и определяет завод изготовитель. Эта информация размещается в технических характеристиках или в инструкции по эксплуатации.

Защита электродвигателей

Чтобы избежать непредвиденных сбоев и дорогостоящего ремонта электродвигателя в процессе эксплуатации, в первую очередь, необходимо обеспечить двигатель защитными устройствами. Защита электродвигателя имеет три уровня:

  • Внешняя защита от короткого замыкания. Самый простой способ – это установка внешних предохранителей.
  • Внешняя защита от перегрузок. Это защита по току.
  • Встроенная защита. Это защита от перегрева обмоток с помощью тепловых автоматических выключателей или датчиков PTС . Для встроенной тепловой защиты всегда требуется исполнительное внешнее устройство – пускатель для тепловых автоматических выключателей и реле контроля температуры обмотки двигателя, (как пример, TER-7 производства ETI Словения) для датчиков PTС.

Для защиты оборудования от перегрузок и короткого замыкания необходимо определить, какое устройство защиты будет использоваться. Оно должно автоматически отключать питание от сети. Плавкий предохранитель является простейшим устройством, выполняющим две функции. Как правило, плавкие предохранители соединяются между собой при помощи аварийного выключателя, который может отключить двигатель от сети питания.

Автоматический токовый выключатель

Автоматический токовый выключатель является устройством защиты от перегрузок по току. Он автоматически размыкает цепь при заданном значении перегрузки по току или возникновении короткого замыкания. Если токовый выключатель применяется в диапазоне своих рабочих параметров, размыкание и замыкание не наносит ему никакого вреда. Сразу же после отключения по перегрузке можно легко возобновить работу автоматического выключателя. Автоматические выключатели бывают двух видов: тепловые и магнитные.

Тепловые автоматические выключатели – это надёжный и экономичный тип защитных устройств, которые используются для электродвигателей. Конструктивно автоматический выключатель состоит из электромагнитного расцепителя, теплового расцепителя и дугогасящей камеры. Они могут выдерживать большие перегрузки по току, которые возникают во время запуска электродвигателя, и защищают электродвигатель при заклинивании ротора. Тепловые автоматические выключатели нечувствительны к напряжению, но чувствительны к температуре.

Магнитные автоматические выключатели являются точными, надёжными и экономичными. Магнитный пускатель – это комбинированный электрический прибор. В состав магнитного пускателя входят: контактор переменного тока, тепловое реле и кнопки включения и выключения. Магнитный автоматический выключатель нечувствителен к изменению температуры окружающей среды: она не влияет на предел его срабатывания, но чувствителен к изменению напряжения. Автоматические выключатели подбираются по номинальному току, потребляемому электродвигателем.

Реле перегрузки:

  • При пуске электродвигателя позволяют выдерживать временные перегрузки без разрыва цепи.
  • Размыкают цепь электродвигателя, если ток превышает предельно допустимое значение и возникает угроза повреждения электродвигателя.
  • Устанавливаются в исходное положение автоматически или вручную после устранения перегрузки.

Обозначение класса срабатывания

Как правило, реле перегрузки реагируют на условия перегрузки в соответствии с характеристикой срабатывания. Деление изделий на классы определяет, за какой период времени реле размыкает цепь при перегрузке. Наиболее часто встречающиеся классы: 10, 20 и 30. Цифры определяют время, необходимое реле для отключения. Реле перегрузки класса 10 срабатывает в течение 10 секунд и менее, при 600% номинального тока, реле класса 20 срабатывает в течение 20 секунд и менее, а реле класса 30 – в течение 30 секунд и менее.

Устройства внешней защиты

Устройства внешней защиты: плавкие предохранители, автоматические выключатели, – реагируют на превышение тока, который потребляет электродвигатель в процессе эксплуатации. Они предназначены для отключения электродвигателя, если ток превышает номинальное значение. Внешнее устройство защиты предохраняет двигатель от выхода из строя в случае блокировки ротора.

При перегреве обмоток электродвигателя этот вид защиты не работает. Примеры:

  • Когда в крышку вентилятора двигателя попадают посторонние предметы, или двигатель смонтирован крышкой вентилятора очень близко от стенки (недостаточно охлаждение), то происходит медленный нагрев до опасной температуры;
  • Очень высокая температура окружающей среды 40°С и выше;
  • Когда внешняя защита двигателя выставлена на слишком высокий ток срабатывания или настроена неправильно;
  • Когда происходят частые включения/выключения электродвигателя, то за короткий период времени пусковые токи могут перегреть обмотки двигателя.

Устройства внутренней защиты

Устройства внутренней защиты обмоток, такие как автоматические выключатели и терморезисторы, намного эффективнее, чем устройства внешней защиты. Это объясняется тем, что они встраиваются в обмотки статора и измеряют температуру непосредственно в обмотках. Самыми распространёнными устройствами внутренней защиты являются тепловые автоматические выключатели и терморезисторы PTC.

Тепловой автоматический выключатель и термостаты

Тепловые автоматические выключатели – это биметаллические пластины (таблетки), размыкающие цепь при увеличении температуры в обмотках (на рис).

Они имеют широкий диапазон температур отключения. Бывают двух видов: с нормально открытыми и нормально закрытыми контактами. Наиболее часто применяются таблетки с нормально закрытыми контактами. Одну или две таблетки встраивают в обмотки статора, соединяют последовательно и выводят на клеммную коробку. Затем при электрическом монтаже двигателя эти контакты напрямую подключают в цепь питания катушки пускателя или контактора. При достижении температуры в обмотках статора равной температуре срабатывания биметаллической пластины, происходит разрыв цепи питания пускателя, и двигатель останавливается. После остывания обмоток, контакты снова замыкаются, и двигатель включается в работу.

Терморезисторы PTC

Терморезисторы PTС (терморезисторы с положительным температурным коэффициентом сопротивления) встраиваться в обмотки электродвигателя заводом изготовителем. Обычно устанавливаются три последовательно соединенных датчика PTC: по одному в каждой обмотке. Цвета проводов датчиков помогают определить температуру срабатывания. Температура срабатывания терморезисторов находится в диапазоне от 90°C до 180°C с шагом 5°. (на рис)

Выводы терморезисторов подключаются к реле контроля температуры, которое отключает цепь питания двигателя при резком увеличении сопротивления. Терморезисторы имеют нелинейную характеристику зависимости сопротивления от температуры. При температуре окружающей среды, сопротивление трех терморезисторов равно примерно 200 Ом; но оно резко увеличится до 3 кОм при достижении температуры отключения реле. Реле контроля температуры обмотки двигателя отключает двигатель от цепи питания при достижении сопротивления 3,3 кОм. После снижения температуры сопротивление терморезисторов уменьшается, и когда сопротивление снижается до 1,8 кОм, реле включает двигатель в работу. Реле контроля температуры TER-7 имеет функцию контроля исправности датчиков, проверка на отсутствие обрыва и короткого замыкания. Функция «memory – память» при срабатывании реле, контакты остаются в разомкнутом состоянии до вмешательства обслуживающего персонала. Возврат в рабочее состояние происходит после нажатия на кнопку «reset – сброс».

Для надежной защиты электродвигателей в процессе эксплуатации необходимо использовать все три вида защит: внешнюю, внутреннюю и встроенную.

Спасибо.

Для защиты и предотвращения нежелательных явлений, связанных с чрезмерным повышением температуры нагрева обмоток электродвигателей бытовых приборов при неисправной их эксплуатации или аварийных режимах работы, часто применяют специальные защитные устройства, которые по принципу действия можно разделить на: токовые, температурные и температурно-токовые.

Итак, по порядку:

Токовые защитные устройства реагируют на ток, протекающий в обмотке статора защищаемого электродвигателя (плавкие предохранители, токовые защитные реле). Основной частью предохранителя является плавкая вставка, которая представляет собой небольшой по длине проводник или пластину, изготовленную из серебра меди или цинка.

Плавкая вставка включается последовательно с защищаемой цепью. При увеличении тока, протекающего через защищаемую цепь, выше допустимого плавкая вставка перегорает и отключает прибор от сети. Для повторного включения прибора необходимо заменить плавкую вставку. При случайных кратковременных перегрузках для тепловой защиты электродвигателей плавкие предохранители применяются редко.

Наибольшее распространение получили токовые защитные реле. Принцип действия их основан на изменении физических свойств материалов при изменении температуры нагрева. Чувствительным элементов таких реле служит биметаллическая пластина, состоящая из двух сваренных по всей длине слоев разнородных металлов с разными коэффициентами линейного температурного расширения. Один конец биметаллической пластины закреплен неподвижно, а второй, на котором расположен подвижный контакт, свободно перемещается.

При обесточенной обмотке электродвигателя подвижный контакт биметаллической пластины соприкасается с неподвижным контактом, расположенным на корпусе реле. При протекании тока через обмотку электродвигателя и последовательно соединенное с ней тепловое реле биметаллическая пластина изгибается в сторону слоя металла с меньшим коэффициентом линейного температурного расширения и при определенном токе размыкает цепь питания электродвигателя.

По способу нагрева биметаллической пластины токовые реле подразделяются на реле с непосредственным, косвенным и комбинированным нагревом. В токовых защитных реле с непосредственным нагревом ток обмотки статора электродвигателя протекает непосредственно через биметаллическую пластину.

Вследствие удельного сопротивления материала биметалла такую конструкцию реле применяют для электродвигателей большой мощности, имеющий большой ток обмотки статора. При косвенном нагреве ток обмотки статора защищаемого электродвигателя протекает через специальный нагреватель, выполненный из пластины или проволоки с большим удельным сопротивлением. Нагреватель можно расположить вблизи биметаллической пластины или непосредственно намотать на нее. Биметаллическую пластину при этом не включают в цепь питания защищаемого электродвигателя.

При комбинированном нагреве ток защищаемого электродвигателя протекает через последовательно соединенные нагревательный элемент и биметаллическую пластину. Изгиб биметаллической пластины обусловлен совместным действием тепла, выделяемого в биметаллической пластине и в нагревателе. Токовые реле с косвенным и комбинированным нагревом применяют для защиты обмоток маломощных электродвигателей с непосредственным разрывом контактов реле силовой питающей сети.

Токовые реле располагают отдельно от электродвигателя. Связь между ним и электродвигателем осуществляется через ток обмотки статора, вследствие чего реле чувствительны лишь к составляющей потерь, которая обусловлена увеличением тока обмотки статора. Однако практике возможны случаи возрастания температуры нагрева обмоток статора без увеличения протекающего через них тока (нарушения условий вентиляции, увеличение механических потерь и др.). На такие возрастания температуры обмоток токовые реле не реагируют.

Токовые реле имеют неодинаковую чувствительность к изменениям перегрузок. Наибольшей чувствительностью они обладают в диапазоне больших перегрузок, связанных с резким возрастанием тока статора защищаемого электродвигателя. В диапазоне малых перегрузок чувствительность их снижается, что является основным недостатком токовой защиты.

Температурные защитные устройства реагируют на температуру нагрева обмоток электродвигателя и позволяют защищать двигатель от многих сложных типов перегрузок (увеличение механических потерь, длительные небольшие перегрузки и др.). Конструктивно температурные реле выполняются в виде биметаллических дисков, встраиваемых непосредственно в обмотку статора. Преимущество температурной защиты - высокая эффективность при малых длительных перегрузках.

Однако этот вид защиты плохо действует при больших толчковых перегрузках, так как тепловая инерция изоляции обмотки статора, через которую тепло передается от обмотки чувствительному элементу реле, приводит к запаздыванию срабатывания защиты. Вследствие этого температурная защита неэффективна при заторможенном роторе электродвигателя, что является ее существенным недостатком.

Температурно-токовые защитные устройства совмещают в себе положительные свойства температурных и токовых устройств и свободны от недостатков, свойственных каждому из них в отдельности. Температурно-токовые защитные устройства достаточно хорошо защищают электродвигателя как при возникновении небольших длительных перегрузках, так и при кратковременных.

Конструктивно температурно-токовую защиту выполняют обычно в виде биметаллических дисков с дополнительным нагревателем. Диск крепят к стали сердечника ротора или встраивают непосредственно в обмотку, а нагреватель включают последовательно с обмоткой статора. Биметаллический диск реагирует на температуру нагрева обмотки и обеспечивает защиту двигателя при длительных небольших перегрузках, а нагреватель реагирует на ток обмотки статора, обеспечивая защиту при кратковременных длительных больших перегрузках.

В зарубежных электробытовых приборах для защиты электродвигателей широко применяют температурную и температурно-токовую защиту, в отечественных наибольшее распространение получила токовая. Основные параметры защитных токовых реле: время срабатывания контактов и время возврата их в исходное положение при определенных значениях тока и окружающей температуры.

Зависимость времени срабатывания контактов реле от тока при определенной температуре называют защитной характеристикой реле. Совокупность таких характеристик для различных температур окружающей среды образует семейство защитных характеристик реле.

В стиральных машинах, например, применяют тепловые реле типа РТ. Это реле с одним нормально замкнутым контактом, служащее для защиты от перегрузок электроустановок и однофазных электрических двигателей переменного тока с питающим напряжением 220 В частотой 50 Гц.

Защита электродвигателя AZD-M


10. Защита электродвигателей (1 семестр)