Все о тюнинге авто

Электродвигатель с термозащитой схема подключения. Выбираем защиту электродвигателя от перегрузок. уровня при аварийном сигнале и отключении

Для того чтобы избежать непредвиденных сбоев, дорогостоящего ремонта и последующих потерь из-за простоя электродвигателя, очень важно оборудовать двигатель защитным устройством.


Защита двигателя имеет три уровня:


Внешняя защита от короткого замыкания установки . Устройства внешней защиты, как правило, являются предохранителями разных видов или реле защиты от короткого замыкания. Защитные устройства данного типа обязательны и официально утверждены, они устанавливаются в соответствии с правилами безопасности.


Внешняя защита от перегрузок , т.е. защита от перегрузок двигателя насоса, а, следовательно, предотвращение повреждений и сбоев в работе электродвигателя. Это защита по току.


Встроенная защита двигателя с защитой от перегрева , чтобы избежать повреждений и сбоев в работе электродвигателя. Для встроенного устройства защиты всегда требуется внешний выключатель, а для некоторых типов встроенной защиты двигателя требуется даже реле перегрузки.



Возможные условия отказа двигателя


Во время эксплуатации могут возникать различные неисправности. Поэтому очень важно заранее предусмотреть возможность сбоя и его причины и как можно лучше защитить двигатель. Далее приведён перечень условий отказа, при которых можно избежать повреждений электродвигателя:


Низкое качество электроснабжения:


Высокое напряжение


Пониженное напряжение


Несбалансированное напряжение/ ток (скачки)


Изменение частоты


Неверный монтаж, нарушение условий хранения или неисправность самого электродвигателя


Постепенное повышение температуры и выход её за допустимый предел:


Недостаточное охлаждение


Высокая температура окружающей среды


Пониженное атмосферное давление (работа на большой высоте над уровнем моря)


Высокая температура рабочей жидкости


Слишком большая вязкость рабочей жидкости


Частые включения/отключения электродвигателя


Слишком большой момент инерции нагрузки (свой для каждого насоса)


Резкое повышение температуры:


Блокировка ротора


Обрыв фазы


Для защиты сети от перегрузок и короткого замыкания при возникновении каких-либо из перечисленных выше условий отказа необходимо определить, какое устройство защиты сети будет использоваться. Оно должно автоматически отключать питание от сети. Плавкий предохранитель является простейшим устройством, выполняющим две функции. Как правило, плавкие предохранители соединяются между собой при помощи аварийного выключателя, который может отключить двигатель от сети питания. На следующих страницах мы рассмотрим три типа плавких предохранителей с точки зрения их принципа действия и вариантов применения: плавкий предохранительный выключатель, быстродействующие плавкие предохранители и предохранители с задержкой срабатывания.






Плавкий предохранительный выключатель - это аварийный выключатель и плавкий предохранитель, объединённые в едином корпусе. С помощью выключателя можно размыкать и замыкать цепь вручную, в то время как плавкий предохранитель защищает двигатель от перегрузок по току. Выключатели, как правило, используются в связи с выполнением сервисного обслуживания, когда необходимо прервать подачу тока.


Аварийный выключатель имеет отдельный кожух. Этот кожух защищает персонал от случайного контакта с электрическими клеммами, а также защищает выключатель от окисления. Некоторые аварийные выключатели оборудованы встроенными плавкими предохранителями, другие аварийные выключатели поставляются без встроенных плавких предохранителей и оснащены только выключателем.


Устройство защиты от перегрузок по току (плавкий предохранитель) должно различать перегрузки по току и короткое замыкание. Например, незначительные кратковременные перегрузки по току вполне допустимы. Но при дальнейшем увеличении тока устройство защиты должно срабатывать немедленно. Очень важно сразу предотвращать короткие замыкания. Выключатель с предохранителем - пример устройства, используемого для защиты от перегрузок по току. Правильно подобранные плавкие предохранители в выключателе размыкают цепь при токовых перегрузках.


Плавкие предохранители быстрого срабатывания


Быстродействующие плавкие предохранители обеспечивают отличную защиту от короткого замыкания. Однако кратковременные перегрузки, такие как пусковой ток электродвигателя, могут вызвать поломку плавких предохранителей такого вида. Поэтому быстродействующие плавкие предохранители лучше всего использовать в сетях, которые не подвержены действию значительных переходных токов. Обычно такие предохранители выдерживают около 500% своего номинального тока в течение одной четвёртой секунды. По истечении этого времени вставка предохранителя плавится и цепь размыкается. Таким образом, в цепях, где пусковой ток часто превышает 500% номинального тока предохранителя, быстродействующие плавкие предохранители использовать не рекомендуется.


Плавкие предохранители с задержкой срабатывания


Данный тип плавких предохранителей обеспечивает защиту и от перегрузки, и от короткого замыкания. Как правило, они допускают 5-кратное увеличение номинального тока на 10 секунд, и даже более высокие значения тока на более короткое время. Обычно этого достаточно, чтобы электродвигатель был запущен и плавкий предохранитель не открылся. С другой стороны, если возникают перегрузки, которые продолжаются больше, чем время плавления плавкого элемента, цепь также разомкнётся.



Время срабатывания плавкого предохранителя - это время плавления плавкого элемента (проволоки), которое требуется для того, чтобы цепь разомкнулась. У плавких предохранителей время срабатывания обратно пропорционально значению тока - это означает, что чем больше перегрузки по току, тем меньше период времени для отключения цепи.





В общем, можно сказать, что у электродвигателей насосов очень короткое время разгона: меньше 1 секунды. В этой связи для электродвигателей подойдут предохранители с задержкой времени срабатывания с номинальным током, соответствующим току полной нагрузки электродвигателя.


Иллюстрация справа демонстрирует принцип формирования характеристики времени срабатывания плавкого предохранителя. Ось абсцисс показывает соотношение между фактическим током и током полной нагрузки: если электродвигатель потребляет ток полной нагрузки или меньше, плавкий предохранитель не размыкается. Но при величине тока, в 10 раз превышающей ток полной нагрузки, плавкий предохранитель разомкнётся практически мгновенно (0,01 с). На оси ординат отложено время срабатывания.


Во время пуска через индукционный электродвигатель проходит достаточно большой ток. В очень редких случаях это приводит к выключению посредством реле или плавких предохранителей. Для уменьшения пускового тока используются различные методы пуска электродвигателя.

Что такое автоматический токовый выключатель и как он работает?

Автоматический токовый выключатель является устройством защиты от перегрузок по току. Он автоматически размыкает и замыкает цепь при заданном значении перегрузки по току. Если токовый выключатель применяется в диапазоне своих рабочих параметров, размыкание и замыкание не наносит ему никакого ущерба. Сразу же после возникновения перегрузки можно легко возобновить работу автоматического выключателя - он просто устанавливается в исходное положение.




Различают два вида автоматических выключателей: тепловые и магнитные.


Тепловые автоматические выключатели


Тепловые автоматические выключатели - это самый надёжный и экономичный тип защитных устройств, которые подходят для электродвигателей. Они могут выдержать большие амплитуды тока, которые возникают при пуске электродвигателя, и защищают электродвигатель от сбоев, таких как блокировка ротора.


Магнитные автоматические выключатели


Магнитные автоматические выключатели являются точными, надёжными и экономичными. Магнитный автоматический выключатель устойчив к изменениям температуры, т.е. изменения температуры окружающей среды не влияют на его предел срабатывания. По сравнению с тепловыми автоматическими выключателями, магнитные автоматические выключатели имеют более точно определённое время срабатывания. В таблице приведены характеристики двух типов автоматических выключателей.





Рабочий диапазон автоматического выключателя


Автоматические выключатели различаются между собой уровнем тока срабатывания. Это значит, что всегда следует выбирать такой автоматический выключатель, который может выдержать самый высокий ток короткого замыкания, который может возникнуть в данной системе.

Функции реле перегрузки

Реле перегрузки:


При пуске электродвигателя позволяют выдерживать временные перегрузки без разрыва цепи.


Размыкают цепь электродвигателя, если ток превышает предельно допустимое значение и возникает угроза повреждения электродвигателя.


Устанавливаются в исходное положение автоматически или вручную после устранения перегрузки.


IEC и NEMA стандартизуют классы срабатывания реле перегрузки.



Как правило, реле перегрузки реагируют на условия перегрузки в соответствии с характеристикой срабатывания. Для любого стандарта (NEMA или IEC) деление изделий на классы определяет, какой период времени требуется реле на размыкание при перегрузке. Наиболее часто встречающиеся классы: 10, 20 и 30. Цифровое обозначение отражает время, необходимое реле для срабатывания. Реле перегрузки класса 10 срабатывает в течение 10 секунд и менее при 600% тока полной нагрузки, реле класса 20 срабатывает в течение 20 секунд и менее, а реле класса 30 - в течение 30 секунд и менее.




Угол наклона характеристики срабатывания зависит от класса защиты электродвигателя. Электродвигатели IEC обычно адаптированы к определённому варианту использования. Это означает, что реле перегрузки может справляться с избыточным током, величина которого очень близка к максимальной производительности реле. Класс 10 - самый распространённый класс для электродвигателей IEC. Электродвигатели NEMA имеют внутренний конденсатор большей ёмкости, поэтому класс 20 для них применяется чаще.


Реле класса 10 обычно используется для электродвигателей насосов, так как время разгона электродвигателей составляет около 0,1-1 секунды. Для многих высокоинерционных промышленных нагрузок необходимо для срабатывания реле класса 20.



Плавкие предохранители служат для того, чтобы защитить установку от повреждений, которые могут быть вызваны коротким замыканием. В связи с этим плавкие предохранители должны иметь достаточную ёмкость. Более низкие токи изолируются с помощью реле перегрузки. Здесь номинальный ток плавкого предохранителя соответствует не рабочему диапазону электродвигателя, а току, который может повредить наиболее слабые составляющие установки. Как было упомянуто ранее, плавкий предохранитель обеспечивает защиту от короткого замыкания, но не защиту от перегрузок при низком токе.


На рисунке представлены наиболее важные параметры, формирующие основу согласованной работы плавких предохранителей в сочетании с реле перегрузки.




Очень важно, чтобы плавкий предохранитель сработал прежде, чем другие детали установки получат тепловое повреждение в результате короткого замыкания.

Современные наружные реле защиты двигателя

Усовершенствованные наружные системы защиты двигателя также обеспечивают защиту от перенапряжения, перекоса фаз, ограничивают число включений/выключений, устраняют вибрации. Кроме того, они позволяют контролировать температуру статора и подшипников через датчик температуры (PT100), измерять сопротивление изоляции и регистрировать температуру окружающей среды. В дополнение к этому усовершенствованные наружные системы защиты двигателя могут принимать и обрабатывать сигнал от встроенной тепловой защиты. Далее в этой главе мы рассмотрим устройство тепловой защиты.




Наружные реле защиты двигателя предназначены для защиты трёхфазных электродвигателей при угрозе повреждения двигателя за короткий или более длительный период работы. Кроме защиты двигателя, наружное реле защиты имеет ряд особенностей, которые обеспечивают защиту электродвигателя в различных ситуациях:


Подаёт сигнал прежде, чем возникает неисправность в результате всего процесса


Диагностирует возникшие неисправности


Позволяет выполнять проверку работы реле во время техобслуживания


Контролирует температуру и наличие вибрации в подшипниках


Можно подключить реле перегрузки к центральной системе управления зданием для постоянного контроля и оперативной диагностики неисправностей. Если в реле перегрузки установлено наружное реле защиты, сокращается период вынужденного простоя из-за прерывания технологического процесса в результате поломки. Это достигается благодаря быстрому обнаружению неисправности и недопущению повреждений электродвигателя.


Например, электродвигатель может быть защищён от:


Перегрузки


Блокировки ротора


Заклинивания


Частых повторных пусков


Разомкнутой фазы


Замыкания на массу


Перегрева (с помощью сигнала, поступающего от электродвигателя через датчик PT100 или терморезисторы)


Малого тока


Предупреждающего сигнала о перегрузке

Настройка наружного реле перегрузки

Ток полной нагрузки при определённом напряжении, указанном в фирменной табличке, является нормативом для настройки реле перегрузки. Так как в сетях разных стран присутствует различное напряжение, электродвигатели для насосов могут использоваться как при 50 Гц, так и при 60 Гц в широком диапазоне напряжений. В связи с этим в фирменной табличке электродвигателя указывается диапазон тока. Если нам известно напряжение, мы можем вычислить точную допустимую нагрузку по току.


Пример вычисления


Зная точную величину напряжения для установки, можно рассчитать ток полной нагрузки при 254 / 440 Y B, 60 Гц.




Данные отображаются в фирменной табличке, какпоказано в иллюстрации.




Вычисления для 60 Гц





Коэффициент усиления напряжения определяется следующими уравнениями:




Расчет фактического тока полной нагрузки (I):




(Значения тока для подключения по схеме «треугольник» и «звезда» при минимальных значениях напряжения)




(Значения тока для подключения по схеме «треугольник» и «звезда» при максимальных значениях напряжения)


Теперь с помощью первой формулы можно рассчитать ток полной нагрузки:


I для «треугольника»:



I для «звезды»:



Величины для тока полной нагрузки соответствуют допустимому значению тока полной нагрузки электродвигателя при 254 Δ/440 Y В, 60 Гц.





Внимание : наружное реле перегрузки электродвигателя всегда устанавливается на номинальное значение тока, указанное в фирменной табличке.


Однако если электродвигатели сконструированы с учётом коэффициента нагрузки, который затем указывается в фирменной табличке, напр., 1.15, заданное значение тока для реле перегрузки может быть увеличено на 15% по сравнению с током полной нагрузки или коэффициентом нагрузки в амперах (SFA - service factor amps), который, как правило, указывается в фирменной табличке.





Для чего нужна встроенная защита двигателя, если электродвигатель уже оснащён реле перегрузки и плавкими предохранителями? В некоторых случаях реле перегрузки не регистрирует перегрузку электродвигателя. Например, в ситуациях:


Когда электродвигатель закрыт (недостаточно охлаждается) и медленно нагревается до опасной температуры.


При высокой температуре окружающей среды.


Когда наружная защита двигателя настроена на слишком высокий ток срабатывания или установлена неправильно.


Когда электродвигатель перезапускается несколько раз в течение короткого периода времени и пусковой ток нагревает электродвигатель, что в конечном счёте, может его повредить.


Уровень защиты, который может обеспечить внутренняя защита, указывается в стандарте IEC 60034-11.


Обозначение TP


TP - аббревиатура «thermal protection» - тепловая защита. Существуют различные типы тепловой защиты, которые обозначаются кодом TP (TPxxx). Код включает в себя:


Тип тепловой перегрузки, для которой была разработана тепловая защита (1-я цифра)


Число уровней и тип действия (2-я цифра)



В электродвигателях насосов, самыми распространёнными обозначениями TP являются:


TP 111: Защита от постепенной перегрузки


TP 211: Защита как от быстрой, так и от постепенной перегрузки.



Обозначение

Техническая егрузка и ее варианты (1-я цифра)

Количество уровней и функциональная область (2-я цифра)

ТР 111

Только медленно (постоянная перегрузка)

1 уровень при отключении

ТР 112

ТР 121

ТР 122

ТР 211

Медленно и быстро (постоянная перегрузка, блокировка)

1 уровень при отключении

ТР 212

ТР 221 ТР 222

2 уровня при аварийном сигнале и отключении

ТР 311 ТР 321

Только быстро (блокировка)

1 уровень при отключении


Изображение допустимого температурного уровня при воздействии на электродвигатель высокой температуры. Категория 2 допускает более высокие температуры, чем категория 1.


Все однофазные электродвигатели Grundfos оснащены защитой двигателя по току и температуре в соответствии с IEC 60034-11. Тип защиты двигателя TP 211 означает, что она реагирует как на постепенное, так и на быстрое повышение температуры.

Сброс данных в устройстве и возврат в начальное положение осуществляется автоматически. Трёхфазные электродвигатели Grundfos MG мощностью от 3.0 кВт стандартно оборудованы датчиком температуры PTC.





Эти электродвигатели были испытаны и одобрены как электродвигатели TP 211, которые реагируют и на медленное, и на быстрое повышение температуры. Другие электродвигатели, используемые для насосов Grundfos (MMG модели D и E, Siemens, и т.п.), могут быть классифицированы как TP 211, но, как правило, они имеют тип защиты TP 111.





Необходимо всегда учитывать данные, указанные на фирменной табличке. Информацию о типе защиты конкретного электродвигателя можно найти на фирменной табличке - маркировка с буквенным обозначением TP (тепловая защита) согласно IEC 60034-11. Как правило, внутренняя защита может быть организована при помощи двух типов устройств защиты: Устройств тепловой защиты или терморезисторов.





Устройства тепловой защиты, встраиваемые в клеммную коробку


В устройствах тепловой защиты, или термостатах, используется биметаллический автоматический выключатель дискового типа мгновенного действия для размыкания и замыкания цепи при достижении определённой температуры. Устройства тепловой защиты называют также «кликсонами» (по названию торговой марки от Texas Instruments). Как только биметаллический диск достигает заданной температуры, он размыкает или замыкает группу контактов в подключённой схеме управления. Термостаты оснащены контактами для нормально разомкнутого или нормально замкнутого режима работы, но одно и то же устройство не может использоваться для двух режимов. Термостаты предварительно откалиброваны производителем, и их установки менять нельзя. Диски герметично изолированы и располагаются на контактной колодке.


Через термостат может подаваться напряжение в цепи аварийной сигнализации - если он нормально разомкнут, или термостат может обесточивать электродвигатель - если он нормально замкнут и последовательно соединён с контактором. Так как термостаты находятся на наружной поверхности концов катушки, то они реагируют на температуру в месте расположения. Применительно к трёхфазным электродвигателям термостаты считаются нестабильной защитой в условиях торможения или в других условиях быстрого изменения температуры. В однофазных электродвигателях термостаты служат для защиты при блокировке ротора.





Тепловой автоматический выключатель, встраиваемый в обмотки


Устройства тепловой защиты могут быть также встроены в обмотки, см. иллюстрацию.





Они действуют как сетевой выключатель как для однофазных, так и для трёхфазных электродвигателей. В однофазных электродвигателях мощностью до 1,1 кВт устройство тепловой защиты устанавливается непосредственно в главном контуре, чтобы оно выполняло функцию устройства защиты на обмотке. Кликсон и Термик - примеры тепловых автоматических выключателей. Эти устройства называют также PTO (Protection Thermique a Ouverture).





Внутренняя установка


В однофазных электродвигателях используется один одинарный тепловой автоматический выключатель. В трёхфазных электродвигателях - два последовательно соединённых выключателя, расположенных между фазами электродвигателя. Таким образом, все три фазы контактируют с тепловым выключателем. Тепловые автоматические выключатели можно установить на конце обмоток, однако это приводит к увеличению времени реагирования. Выключатели должны быть подключены к внешней системе управления. Таким образом электродвигатель защищается от постепенной перегрузки. Для тепловых автоматических выключателей реле - усилителя не требуется.


Тепловые выключатели НЕ ЗАЩИЩАЮТ двигатель при блокировке ротора.

Принцип действия теплового автоматического выключателя

На графике справа показана зависимость сопротивления от температуры для стандартного теплового автоматического выключателя. У каждого производителя эта характеристика своя. TN обычно лежит в интервале 150-160 °C.





Подключение


Подключение трёхфазного электродвигателя со встроенным тепловым выключателем и реле перегрузки.


Обозначение TP на графике


Защита по стандарту IEC 60034-11:


TP 111 (постепенная перегрузка). Для того чтобы обеспечить защиту при блокировке ротора, электродвигатель должен быть оборудован реле перегрузки.






Второй тип внутренней защиты - это терморезисторы, или датчики с положительным температурным коэффициентом (PTC). Терморезисторы встраиваются в обмотки электродвигателя и защищают его при блокировке ротора, продолжительной перегрузке и высокой температуре окружающей среды. Тепловая защита обеспечивается с помощью контроля температуры обмоток электродвигателя с помощью PTC датчиков. Если температура обмоток превышает температуру отключения, сопротивление датчика меняется соответственно изменению температуры.








В результате такого изменения внутренние реле обесточивают контур управления внешнего контактора. Электродвигатель охлаждается, и восстанавливается приемлемая температура обмотки электродвигателя, сопротивление датчика понижается до исходного уровня. В этот момент происходит автоматическое приведение модуля управления в исходное положение, если только он предварительно не был настроен на сброс данных и повторное включение вручную.


Если терморезисторы установлены на концах катушки самостоятельно, защиту можно классифицировать только как TP 111. Причина в том, что терморезисторы не имеют полного контакта с концами катушки, и, следовательно, не могут реагировать так быстро, как если бы они изначально были встроены в обмотку.





Система, чувствительная к температуре терморезистора, состоит из датчиков с положительным температурным коэффициентом (PTC), устанавливаемых последовательно, и твердотельного электронного выключателя в закрытом блоке управления. Набор датчиков состоит из трёх - по одному на фазу. Сопротивление в датчике остаётся относительно низким и постоянным в широком диапазоне температур, с резким увеличением при температуре срабатывания. В таких случаях датчик действует как твердотельный тепловой автоматический выключатель и обесточивает контрольное реле. Реле размыкает цепь управления всего механизма для отключения защищаемого оборудования. Когда температура обмотки восстанавливается до допустимого значения, блок управления можно привести в прежнее положение вручную.


Все электродвигатели Grundfos мощностью от 3 кВт и выше оснащены терморезисторами. Система терморезисторов с положительным температурным коэффициентом (PTC) считается устойчивой к отказам, так как в результате выхода из строя датчика или отсоединении провода датчика возникает бесконечное сопротивление, и система срабатывает так же, как при повышении температуры, - происходит обесточивание контрольного реле.

Принцип действия терморезистора

Критические значения зависимости сопротивление/ температура для датчиков системы защиты электродвигателя определены в стандартах DIN 44081/ DIN 44082.


На кривой DIN показано сопротивление в датчиках терморезистора в зависимости от температуры.





По сравнению с PTO терморезисторы имеют следующие преимущества:


Более быстрое срабатывание благодаря меньшему объёму и массе


Лучше контакт с обмоткой электродвигателя


Датчики устанавливаются на каждой фазе


Обеспечивают защиту при блокировке ротора

Обозначение TP для электродвигателя с PTC

Защита двигателя TP 211 реализуется, только когда терморезисторы PTC полностью установлены на концах обмоток на заводе-изготовителе. Защита TP 111 реализуется только при самостоятельной установке на месте эксплуатации. Электродвигатель должен пройти испытания и получить подтверждение о соответствии его маркировке TP 211. Если электродвигатель с терморезисторами PTC имеет защиту TP 111, он должен быть оснащён реле перегрузки для предотвращения последствий заклинивания.


Соединение


На рисунках справа представлены схемы подключения трёхфазного электродвигателя, оснащённого терморезисторами PTC, с расцепителями Siemens. Для реализации защиты как от постепенной, так и от быстрой перегрузки, мы рекомендуем следующие варианты подключения электродвигателей, оснащённых датчиками PTC, с защитой TP 211 и TP 111.






Если электродвигатель с терморезистором имеет маркировку TP 111, это значит, что электродвигатель защищён только от постепенной перегрузки. Для того чтобы защитить электродвигатель от быстрой перегрузки, электродвигатель должен быть оборудован реле перегрузки. Реле перегрузки должно подключаться последовательно к реле PTC.






Защита TP 211 двигателя обеспечивается, только если терморезистор PTC полностью встроен в обмотки. Защита TP 111 реализуется только при самостоятельном подключении.


Терморезисторы разработаны в соответствии со стандартом DIN 44082 и выдерживают нагрузку Umax 2,5 В DC. Все отключающие элементы предназначены для приёма сигналов от терморезисторов DIN 44082, т.е терморезисторов компании Siemens.


Обратите внимание : Очень важно, чтобы встроенное устройство PTC было последовательно соединено с реле перегрузки. Многократные повторные включения реле перегрузки могут привести к сгоранию обмотки в случае блокировки электродвигателя или пуска при высокой инерции. Поэтому очень важно, чтобы температурные показатели и данные по потребляемому току устройства PTC и реле

Среди выпускаемой продукции компании Sensata особое место занимают термостаты, служащие для отключения различных устройств (электродвигателей, обмоток реле и т.д.) от цепей питания при перегрузке по току или при перегреве. Согласно установившейся традиции Sensata называет такие устройства «мотор-протекторами» (motor-protectors), поскольку основное их назначение состоит именно в защите электромоторов. Однако заложенный в них принцип отключения цепи можно использовать также для защиты и других устройств (в этом случае используется термин «термопротектор»). В некоторых случаях мотор-протекторы Sensata можно применять вместо плавких предохранителей. При этом количество их циклов срабатывания исчисляется тысячами, тогда как плавкий предохранитель представляет собой одноразовое устройство.

Отметим, что в русскоязычной литературе мотор-протекторы принято называть просто «термореле», хотя они представляют собой более широкий класс устройств. Поскольку в статье кроме как о мотор-протекторах ни о каких других термореле речи не идет, то в отношении перечисленных ниже семейств мы в равной степени будем использовать оба термина.

Принцип действия

Как и в термостатах серии 1NT, в мотор-протекторах Sensata используется хорошо известное свойство биметаллической пластины — щелчком изгибаться при достижении некоторого критического порога температуры (что происходит благодаря различным температурным коэффициентам расширения металлов, слагающих биметаллический диск), размыкая электрический контакт, по которому протекает ток.

При снижении температуры до безопасного уровня обратное замыкание контактов происходит автоматически у всех семейств мотор-протекторов, описываемых в этой статье, за исключением одного: 3MP Self-Hold, где обратное замыкание происходит принудительно.

Поскольку протекающий ток нагревает термореле, то при заданной температуре окружающей среды можно измерить силу тока, при которой происходит нагревание до температуры размыкания, и использовать мотор-протектор как предохранитель, отключающий цепь при заданном токе (замена плавкого предохранителя).

Типы мотор-протекторов Sensata

Все мотор-протекторы компании Sensata подразделяются на несколько больших семейств:

  • 2MM- низкопрофильные мотор-протекторы, рассчитанные на малые переменные токи. Нормируемое количество циклов срабатывания: 3000 при 250В и 4 (1,5)А. Здесь и далее в аналогичных случаях в круглых скобках указывается значение индуктивного тока. А перед скобками- значение резистивного тока.
  • 7AM- полнопрофильные мотор-протекторы, рассчитанные на переменные и постоянные токи. Нормируемое количество циклов срабатывания составляет 10000 при 20А постоянного тока и 16В. Те же 10000 циклов гарантируются производителем при следующих трех режимах переменного тока: 22А при 120В; 8А при 277В и 4А при 600В.
  • 15AM- полнопрофильные мотор-протекторы с расширенным набором опций (например, больший набор возможных значений внутренних сопротивлений), рассчитанные только на переменные токи. Нормируемое количество циклов срабатывания составляет 10000 при 13 (5)А и 250В переменного тока.
  • 3MP- полнопрофильные мотор-протекторы, рассчитанные на работу с переменным током, с нагревательным элементом, увеличивающим чувствительность термореле. Нормируемые количества циклов срабатывания: 500 циклов при 27,5А@cos1 и 250В; 1000 циклов при 18А@cos0,6 и 250В; 15000 циклов при 18А@cos0,6 и 120В.
  • 3MP Self-Hold- то же, что и 3MP, но со специальной функцией удержания отключения и рассчитанные на работу с переменным током. Нормируемое значение количества циклов срабатывания: 300 циклов при 18А@cos0,6 и 250В.
  • 6AP- полнопрофильные мотор-протекторы с нагревательным элементом, рассчитанные только на работу с постоянным током. Нормируемое количество циклов срабатывания: 30000 при 30А и 15В или те же 30000 циклов при 15А и 30В.

Отметим, что термин «полнопрофильные» мотор-протекторы специалистами компании Sensata не употребляется. Мы ввели его здесь для того, чтобы при рассмотрении описываемых семейств с точки зрения конструктива противопоставить по внешнему виду и массе семейство 2MM-протекторов всем остальным.

Отличительные черты каждого
из семейств мотор-протекторов Sensata

2MM — самый маленький по размеру из описываемых в этой статье типов термореле . Низкопрофильность является его главным достоинством и недостатком одновременно. Небольшая поверхность устройства ограничивает максимальную величину рассеиваемого тепла, что делает прибор менее мощным по сравнению с его полнопрофильными «собратьями». Нормируемая величина токов отключения не превышает 7…8 А, а гарантируемое количество в 3000 циклов задается при и того более низком токе в 4 (1,5) А. Число опций при заказе термореле 2ММ также минимально. Одна из опций касается длины и типа проводного соединения. Это отражено соответствующим образом в структуре партнамбера (см. рис. 1).

Рис. 1.

Вторая — 2ММ-термореле доступны в двух модификациях: с эпоксидным покрытием и с дополнительным изолирующим чехлом. Внешний вид изделия показан на рис. 2. Длина корпуса датчика составляет не более 28 мм, а ширина 5,3 мм.

Рис. 2.

Графики на рис. 3 и 4 предназначены для выбора образцов в качестве первого приближения (для последующих верификационных тестов). Причем на рисунке 4 представлены кривые для 3-х различных биметаллических пластин с тремя различными температурами размыкания.

Рис. 3.

Рис. 4.

Другие технические характеристики 2ММ:

  • Диапазон температур размыкания (конкретная температура указывается заказчиком) 70…160°С с шагом в 5°С;
  • Допуск для температуры размыкания ±10°К;
  • Максимальная температура внешней среды 175°С;
  • Дифференциал не менее 20°К.

Небольшие размеры данного семейства определяют его применение. 2ММ предназначены для защиты от перегрузки по току (в том числе в режиме принудительного останова ротора, иначе называемого режимом заторможенного ротора) двигателей небольшой мощности, главным образом однофазных. Эти мотор-протекторы также используются в маломощных трансформаторах, катушках индуктивности, электромагнитных клапанах (соленоидных клапанах), применяющихся как в промышленности, так и в бытовой технике. В однофазных электродвигателях данный тип термореле можно включать прямо в основную цепь, монтируя его как на обмотку, так и внутрь обмотки (последнее применение возможно именно благодаря небольшим размерам данного типа мотор-протекторов).

По сравнению с 2MM полнопрофильные мотор-протекторы (чертежи с габаритными размерами на все мотор-протекторы читатель может найти на сайте производителя, ссылки на соответствующие страницы даны в конце статьи) рассчитаны на большие значения токов срабатывания и протекающих штатных токов. Эти термореле также включают в цепи переменного тока. Единственное исключение — семейство 7AM, которое можно также включать и в цепи постоянного тока. Для 7АМ гарантированное количество циклов срабатывания, равное 10000, нормируется, во-первых, для одного режима использования на постоянном токе и, во-вторых, для трех различных режимов использования на переменном токе.

7AM являются лидерами рынка в своем классе устройств (см. рис. 5). Длина корпуса этого датчика составляет 20 мм, а ширина 10 мм. Основу прибора составляет откалиброванный биметаллический диск, изготовленный по специальной запатентованной технологии Klixon® и реагирующий как на изменение окружающей температуры, так и на изменение тока, протекающего через устройство.

Рис. 5.

Рисунок 6 предназначен для выбора образцов в качестве первого приближения (для последующих верификационных тестов).

Рис. 6.

Биметаллический диск крепится посредством приваренной шпонки. Напротив него находится неподвижный контакт. Нижняя часть корпуса отделена от верхней при помощи изолирующей прокладки, которая одновременно герметизирует собой зазор между двумя половинками корпуса. От термостата идет провод, длина которого определяется заказчиком, что отражено в структуре партнамбера (см. рис. 7). Провод оканчивается разъемом под клемму либо другими предусмотренными для данного мотор-протектора стандартными типами контактов. Компания Sensata рекомендует применять 7АМ в электродвигателях с экранированным полюсом, конденсаторных двигателях, балластах люминесцентных и разрядных ламп высокой интенсивности, трансформаторах, встраиваемых светильниках, портативных батарейных источниках питания, пылесосах, вспомогательных электродвигателях, соленоидах и материнских платах персональных компьютеров. Детальная расшифровка партнамбера представлена на рис. 7.

Рис. 7.

На рис. 6 и рис. 8 представлены два основных семейства кривых, которые определяют режим работы термореле 7АМ. Допустим, температура окружающей среды составляет 25°С, мы хотим, чтобы размыкание цепи происходило при 100°С (разница между температурой размыкания и температурой окружающей среды в 75°С), а ток размыкания составлял 15 А, тогда, судя по рис. 6, мы должны выбрать вариант с биметаллическим диском с низким внутренним сопротивлением. Если мы ориентируемся на ток размыкания в 8 А (при оговоренных только что условиях), то мы должны выбрать уже вариант термореле с высоким внутренним сопротивлением биметаллического диска.

Рис. 8.

График на рис. 8 предназначен для выбора образцов в качестве первого приближения (для последующих верификационных тестов). Здесь представлены кривые для четырех различных вариантов биметаллических дисков, различающихся между собой значениями электрического сопротивления. В структуре партнамбера (рис. 7) сопротивления биметаллических дисков косвенным образом отражены в трехзначных цифровых кодах, следующих непосредственно за корневым обозначением серии: 7AM. Два из них (316 и 020) соответствуют биметаллическому диску с низким сопротивлением (для их размыкания и нагрева требуется больший ток), а два других (219 и 201) — биметаллическому диску с высоким сопротивлением (он нагревается сильнее и при меньших токах).

15AM — один из наиболее массовых мотор-протекторов, выпускаемых компанией Sensata (лидер продаж на европейском рынке защиты электродвигателей переменного тока). Термореле 15AM используются для защиты электродвигателей как промышленного, так и бытового применения. Поскольку корпус этих мотор-протекторов сделан из металла, может возникнуть необходимость изолировать его от других металлических частей устройства, в котором это термореле применяется. Для этого 15АМ может поставляться заказчику уже в изолирующем чехле (литера «А» в партнамбере). 15АМ, в отличие от 7АМ, рассчитаны только на переменный ток и выпускаются с шестью различными вариантами внутреннего сопротивления (а не с двумя, как в случае 2ММ). А значит, можно точнее подобрать режим работы устройства. С другой стороны, 7АМ выдерживают пропитку катушки, а 15АМ — нет. Кроме того, у мотор-протекторов 7АМ провода могут подводиться не только с одной, но и с разных сторон корпуса, а в 15АМ такой модификации нет. Внешне 15АМ похож на 7АМ. Кроме того, 15АМ имеют похожие графики зависимостей, представленных для 7АМ на рис. 6 и рис. 8. Их легко можно найти на сайте производителя. по приведенной в конце этой статьи ссылке на техническое описание семейства 15АМ. Там же приведена структура партнамбера 15АМ.

15AM используются для защиты моторов и насосов моющих (в том числе и посудомоечных) машин, сушильных аппаратов, пылесосов, вентиляторов, зарядных устройств для аккумуляторов и микроволновых печей.

Другие технические характеристики 15АМ:

  • Диапазон температур размыкания (конкретная температура указывается заказчиком) 65…170°С с шагом в 5°С;
  • Максимальная температура внешней среды 180°С;
  • Максимальная температура выводов 185°К.

Серия 3MP отличается тем, что внутри корпуса рядом с биметаллическим диском находится еще и S-образный нагревательный элемент, который обеспечивает лучшую чувствительность (откликаемость) данного устройства при перегреве. Для этого достаточно сравнить кривые зависимости времени размыкания первого цикла при превышении порогового тока для 3MP и 7AM: при меньших значениях тока для 3MP-термореле время срабатывания меньше. Благодаря указанному нагревательному элементу биметаллический диск разогревается быстрее. Однако, это приводит к заметному уменьшению гарантированного количества циклов срабатывания.

Компания Sensata специально сертифицировала 3МР (рис. 9) как устройство, обеспечивающее размыкание электрической цепи при превышении заданного тока и пороговой температуры, что позволяет использовать данную серию в качестве недорогого и эффективного средства защиты тороидальных трансформаторов от перегрузок. Другие применения (они также определяются повышенной чувствительностью данного типа мотор-протекторов): защита при перегреве электродвигателей моющих машин, сушилок, посудомоечных машин и пылесосов.

Рис. 9.

Предполагается, что во всех защищаемых устройствах должно использоваться напряжение 120…250 В переменного тока.

Рис. 10.

На рис. 11. представлены кривые для двух различных значений сопротивлений биметаллического диска.

Рис. 11.

Опционально мотор-протекторы данного семейства могут поставляться в специальном изолирующем чехле, сделанном из мэйлара.

Общая структура партнамбера для 3MP отсутствует, и на сегодняшний день эти устройства вначале поставляются заказчику в качестве опытных образцов, изготовленных на основании его требований. Партнамбер формируется производителем в зависимости от каждого конкретного случая.

Другие технические характеристики 3МР:

  • Допуск для температуры размыкания ±5°К;
  • Максимальная температура внешней среды (Тразм + 20)°С;

3MP Self-Hold (мотор-протектор с удержанием отключения) — по сути, тот же мотор-протектор, что и ЗMP, но возвращающийся к исходному состоянию только через некоторое время после ручного отключения цепи питания. Подчеркнем, что речь идет именно о принудительном отключении внешней цепи. Это возможно благодаря тому, что помимо S-образного нагревателя, увеличивающего чувствительность, здесь используется еще один тип нагревательного элемента — PTC-элемент (от англ. Positive Temperature Coefficient ). Он монтируется непосредственно на корпус 3MP и крепится к нему металлической скобой (рис. 12). РТС-элемент блокирует характерное для обычных нормально-замкнутых (open-on-rise) биметаллических термостатов самопроизвольное замыкание контактов при понижении температуры обратно до точки нижнего порога срабатывания. Когда основная цепь размыкается, ток начинает течь параллельно через нагревательный PTC-элемент, обладающий большим сопротивлением.

Рис. 12.

Чтобы биметаллическая пластина остыла и разомкнула цепь, а потом снова замкнула ее, необходимо, чтобы сначала остыл этот нагревательный элемент. В данном случаи переводить термин «Self-Hold» как «самовозврат к исходному состоянию» неправильно. Как раз наоборот, возврат данного термореле к исходному состоянию происходит принудительно, т.е. путем отключения внешней цепи питания. Способность отключаться автоматически (если что-то не так) и включаться назад только принудительно как раз и определяют спектр применения мотор-протекторов семейства 3MP Self-Hold как в индустриальном, так и в бытовом оборудовании: моечные машины, пылесосы, цепные пилы, газонокосилки, насосы. При этом защищаемые электродвигатели должны быть рассчитаны на переменный ток с напряжением питания 120…250 В. Однако усложнение принципа работы данного устройства (появление еще одного нагревательного элемента) приводит к дальнейшему уменьшению гарантированного числа циклов срабатывания до 300. Несмотря на то что внешний вид 3MP Self-Hold сильно отличается от 3МР, мотор-протекторы 3MP Self-Hold имеют аналогичные кривые основных рабочих зависимостей (рис. 10 и 11). Партнамбер же в каждом конкретном случаи вырабатывается производителем для заказчика на основе детального описания режимов работы.

Другие технические характеристики 3МР Self-Hold:

  • Диапазон температур размыкания (конкретная температура указывается заказчиком) 80…170°С с шагом в 5°К;
  • Допуск для температуры размыкания ±8°К;
  • Температура окружающей среды, при которой гарантируется стабильность удержания отключения (при обратном падении температуры окружающей среды ниже температуры размыкания) 0°С;
  • Максимально допустимая температура (в течение 5 минут) 200°С;
  • Максимальная температура внешней среды Тразм + 20°С.

6AP рассчитаны строго на использование на постоянном токе. По своему внутреннему устройству 6AP являются почти точной копией мотор-протекторов 3MP, которые рассчитаны на работу на переменном токе. У них также рядом с биметаллическим диском находится S-образный нагревательный элемент, который повышает чувствительность данного элемента, уменьшая величину тока размыкания и время отклика.

Кривые зависимостей максимального тока размыкания от температуры окружающей среды и зависимости времени первого размыкания от силы тока очень близки к аналогичным кривым для 3МР (рис. 10, 11), поэтому мы их здесь не приводим, отсылая читателя к соответствующему техническому описанию.

Другие технические характеристики 6АР:

  • Диапазон температур размыкания (конкретная температура указывается заказчиком) 100…170°С с шагом в 5°К;
  • Допуск для температуры размыкания ±5°К;
  • Максимально допустимая температура (в течение 5 минут) 200°С;
  • Максимальная температура внешней среды 20°С;
  • Временная задержка 4…10 сек при температуре окружающей среды 25°С.

Возможность пропитки

Для некоторых применений требуется возможность пропитки индуктивной катушки, которую надо защитить от перегрева и перегрузки по току при помощи термореле. Из описываемых в этой статье термореле для этих целей подходит только серия 7AM, т.к. изолирующая прокладка, соединяющая две половинки корпуса мотор-протекторов данного типа, специально рассчитана на пропитку.

Выбор мотор-протектора Sensata
для конкретного применения

В простых случаях заказчик сможет сам подобрать нужный мотор-протектор для своего применения, а также правильно заказать нужный партнамбер изделия. Материала, представленного в данной статье и технических описаний с сайта компании Sensata вполне достаточно. Например, самостоятельный выбор легко сделать, когда речь идет о применении мотор-протекторов серии 2ММ для стандартных приложений.

В более сложных случаях для заказа необходима консультация инженеров Sensata. В какой форме ее можно получить, и что для этого необходимо сделать — зависит от конкретных технических требований. Иногда заказчику необходимо просто заполнить стандартную анкету (как в случае с серией 3МР), и технические специалисты Sensata сами посоветуют, какой мотор-протектор больше подходит для данных условий применения. В любом случаи технические специалисты компании Sensata помогут заказчику сделать правильный предварительный выбор образцов для последующего тестирования (проведения верификационных тестов и выбора наиболее подходящего из нескольких близких по характеристикам образцов).

«- Есть ли у Вас защита двигателя?
— Да, есть. Там сидит специальный человек, следит за двигателем. Когда легкий дымок с двигателя пойдет, его выключает, не дает ему сгореть.»

Это реальный диалог с одним из наших покупателей. Оставим в стороне вопрос о технической культуре и уровне образования, — здесь рассмотрим только технические вопросы как решить эту проблему.

От чего электродвигатель выходит из строя? При прохождении электрического тока через проводник в этом проводнике выделяется тепло. Поэтому электрический двигатель при работе, естественно, нагревается. Производителем рассчитано, что при номинальном токе двигатель не перегреется.

А вот если ток через обмотки двигателя по каким-то причинам увеличится — то электродвигатель начнет перегреваться, и если этот процесс не остановить — то в дальнейшем перегреется и выйдет из строя. В обмотках из-за перегрева начинает плавиться изоляция проводников и происходит короткое замыкание проводников. Поэтому одна из задач защиты - ограничит ток, протекающий через электродвигатель, не выше допустимого.

Одним из самых распространенных способов — это защита электродвигателя при помощи теплового реле. Тепловые реле применяются для защиты электродвигателей от перегрузок недопустимой продолжительности, а также от обрыва одной из фаз.

Конструктивно тепловое реле представляют собой набор биметаллических расцепителей (по одному на каждую фазу), по которым протекает ток электродвигателя, оказывающий тепловое действие на пластины. Под действием тепла происходит изгиб биметаллической пластины, приводящий в действие механизм расцепления. При этом происходит изменение состояния вспомогательных контактов, которые используются в цепях управления и сигнализации. Реле снабжаются биметаллическим температурным компенсатором с обратным прогибом по отношению к биметаллическим пластинам для компенсации зависимости от температуры окружающей среды, обладают возможностью ручного или автоматического взвода (возврата).

Реле имеет шкалу, калиброванную в амперах. В соответствии с международными стандартами шкала должна соответствовать значению номинального тока двигателя, а не тока срабатывания. Ток несрабатывания реле составляет 1,05 I ном. При перегрузке электродвигателя на 20% (1,2 I ном), произойдет его срабатывание в соответствии с токо-временной характеристикой.

Реле, в зависимости от конструкции, могут монтироваться непосредственно на магнитные пускатели, в корпуса пускателей или на щиты. Правильно подобранные тепловые реле защищают двигатель не только от перегрузки, но и от заклинивания ротора, перекоса фаз и от затянутого пуска.

Как правильно подобрать тепловое реле

Схема защиты электродвигателя при подключении его через магнитный пускатель с катушкой 380В и тепловым реле (нереверсивная схема подключения)

Схема состоит: из QF — автоматического выключателя;KM1 — магнитного пускателя; P — теплового реле; M — асинхронного двигателя; ПР — предохранителя; кнопки управления (С-стоп, Пуск) . Рассмотрим работу схемы в динамике.

Включаем питание QF — автоматическим выключателем, нажимаем кнопку «Пуск» своим нормально разомкнутым контактом подает напряжение на катушку КМ1 — магнитного пускателя. КМ1 – магнитный пускатель срабатывает и своими нормально разомкнутыми, силовыми контактами подает напряжение на двигатель. Для того чтобы не удерживать кнопку «Пуск», чтобы двигатель работал, нужно ее зашунтировать, нормально разомкнутым блок контактом КМ1 – магнитного пускателя.
При срабатывании пускателя блок контакт замыкается и можно отпустить кнопку «Пуск» ток побежит через блок контакт на КМ1 — катушку.
Отключаем двигатель, нажимаем кнопу «С – стоп», нормально замкнутый контакт размыкается и прекращается подача напряжение к КМ1 – катушке, сердечник пускателя под действием пружин возвращается в исходное положение, соответственно контакты возвращаются в нормальное состояние, отключая двигатель. При срабатывании теплового реле — «Р», размыкается нормально замкнутый контакт «Р», отключение происходит аналогично.

Недостатки тепловых реле

Следует отметить и недостатки тепловых реле. Иногда трудно подобрать реле из имеющихся в наличии так, чтобы ток теплового элемента соответствовал току электродвигателя. Кроме того, сами реле требуют защиты от короткого замыкания, поэтому в схемах должны быть предусмотрены предохранители или автоматы. Тепловые реле не способны защитить двигатель от режима холостого хода или недогрузки двигателя, причем иногда даже при обрыве одной из фаз. Поскольку тепловые процессы, происходящие в биметалле, носят достаточно инерционный характер, реле плохо защищает от перегрузок, связанных с быстропеременной нагрузкой на валу электродвигателя.
Если нагрев обмоток обусловлен неисправностью вентилятора (погнуты лопасти или проскальзывание на валу), загрязнением оребренной поверхности двигателя, тепловое реле тоже окажется бессильным, т. к. потребляемый ток не возрастает или возрастает незначительно. В таких случаях, только встроенная тепловая защита способна обнаружить опасное повышение температуры и вовремя отключить двигатель.

Александр Коваль
067-1717147
Статья отредактирована в ноябре 2015 года.

Для защиты электродвигателей от коротких замыканий и перегрузок используют сочетание предохранителей с магнитными пускателями, а также автоматические выключатели. Отсутствие в ряде случаев технической возможности постоянной настройки тепловой защиты выдвинули новые требования к разработке встроенной температурной защиты.

Как показывает практика, встроенная температурная защита эффективно отключает электродвигатели при длительных перегрузках, неправильных процессах пуска и торможения, повышенной частоте включении, обрыве фаз, колебаниях напряжения сети в пределах 70...110% от номинального значения, заклинивании приводного механизма, включении электродвигателя с заклиненным ротором. Повышенной температуре окружающей среды, нарушениях в системе охлаждения.

Температурная защита состоит из температурных датчиков и управляющего устройства.

Температурными датчиками служат полупроводниковые термосопротивления - позисторы пли резисторы, встроенные в лобовую часть обмотки статора (по одному в каждую фазу).

Характерное свойство - высокая чувствительность в узком интервале температур. Например, промышленный позистор СТ5-1, который можно использовать в схеме встроенной температурной защиты электродвигателя, имеет в интервале температур от 60 до 100° практически постоянное сопротивление, а в интервале от 120 до 130° его сопротивление увеличивается в несколько тысяч раз.

В качестве температурных датчиков для устройств встроенной защиты применяют кобальтомарганцевые термосопротивления типа ТР-33, работающие в релейном режиме. Имеется шесть вариантов рабочих групп термосоиротивлений ТР-33, каждой из которых соответствует своп минимальная и максимальная рабочая температура в пределах 5°.

Встроенную защиту с термосопротивлениями ТР-33 настраивают в зависимости от класса изоляции защищаемого электродвигателя. Настройку осуществляют либо изменением напряжения, подаваемого на термосопротивлеиие. либо шунтированиям термосопротивленнй добавочными сопротивлениями.

Наибольшее практическое применение для датчиков встроенной температурной зашиты электродвигателей находят терморезисторы с положительным CT14-1A (t°ср-130°) или СТ 14-1 Б (t°ср -105°).

Терморезисторы СТ14-1А изготовляют в виде дисков диаметром 3 и толщиной 1,5 мм. Комплект таких датчиков (три диска из расчета один на фазу) является чувствительным органом защиты, подающим сигнал в управляющее устройство.

В настоящее время выпускают два вида устройств встроенной температурой защиты - УВТЗ-1 и УВТЗ-4А. Принцип их действия одинаков, хотя схема и конструктивное оформление различны.

Устройства температурной защиты унифицированы для всех типоразмеров электродвигателей, взаимозаменяемы и не требуют регулировки и настройки при монтаже и эксплуатации.

Управляющее устройство служит для усиления сигнала, поступающего от встроенных в обмотку статора электродвигателя температурных датчиков, и преобразования в сигнал, управляющий отключением (типа ПМЛ, ПМЕ и др.).

Устройство типа УВТЗ-1 состоит из преобразователя и выходного реле. В качестве выходного реле применяют РЗС-6, которое подает сигнал на управление магнитным пускателем.

В схеме автоматически осуществляется самоконтроль за ее работой, то есть обеспечивается гарантия отключения электродвигателя при возникновении неисправности в каком-либо элементе температурной защиты. При выходе из строя датчиков температуры или обрыве цепи их соединения с управляющим устройством последнее не позволяет включить электродвигатель в сеть.

В случае короткого замыкания в цени датчиков с управляющим устройством транзисторы будут закрыты, управляющий переход транзистора обесточен, реле отключается и своими контактами разрывает пень питания катушки магнитного пускателя.

Рис. 1. Схема электрическая принципиальная устройства встроенной температурной защиты электродвигателей УВТЗ-1

Датчики температуры устанавливают в асинхронные двигатели на заводе при их изготовлении или капитальном ремонте, а также в действующие электродвигатели во время эксплуатации. После их установки измеряют сопротивление всей цепи датчиков, которое при температуре 20 ±5° должно быть в пределах 120... 150 Ом.

Измерительный ток применяемого омметра не может превышать 50 мА. а напряжение - 2,5 В. Использовать для этих целей мегомметры не разрешается.

Измеряют сопротивление изоляции датчиков относительно обмотки и корпуса электродвигателя меггомметром на 500 В, причем величина этого сопротивления не должна превышать 0,5 МОм.

Устройство рассчитано для работы в вертикальном положении, допускает установку на стенах и конструкциях, не подверженных ударам или сильной вибрации, и не должно подвергаться постоянному нагреву, в том числе солнечному. Его можно размещать в станциях управления, сборных распределительных устройствах и отдельных шкафах.

Управляющее устройство соединяют с датчиком изолированным проводом сечением не менее 0,5 мм2 для медных проводов и 1,0 мм2 - для алюминиевых.

Проверяют работоспособность смонтированного устройства нажатием кнопки «Пуск» магнитного пускателя. При исправном электродвигателе и правильном соединении датчиков устройства и магнитного пускателя, а также при исправном их состоянии электродвигатель вращается.

Убедившись в его нормальной работе на холостом ходу, необходимо разомкнуть цепь датчиков в коробке выводов электродвигателя. Если при этом электродвигатель отключится от сети, значит, устройство встроенной защиты работает нормально. Повторно проверяют защиту путем замыкания накоротко цепи датчиков в коробке выводов. В этом случае электродвигатель также должен отключиться от сети.

Зашита асинхронных электродвигателей от перегрева традиционно реализуется на основе, тепловой токовой защиты. В подавляющем большинстве двигателей, находящихся в эксплуатации, используется тепловая токовая защита, которая недостаточно точно учитывает фактические температурные режимы работы электродвигателей, а также его температурные постоянные времени.

В косвенной тепловой защите асинхронного электродвигателя включают в цепи питания статорных обмоток асинхронною электродвигателя, а при превышении максимально допустимого тока статора, биметаллические пластины, нагреваясь, отключают питание статора от источника электроэнергии.

Недостатком этого метода является то, что защита реагирует не па температуру нагрева обмоток статора, а на количество выделенного тепла без учета времени работы в зоне перегрузок и реальных условий охлаждения асинхронного электродвигателя. Это не позволяет в полной мере использовать перегрузочную способность электродвигателя и снижает производительность оборудования, работающего в повторно-кратковременном режиме из-за ложных отключений.

Сложность конструкции , недостаточно высокая надежность систем защиты на их основе, привели к созданию тепловой защиты, реагирующей непосредственно на температуру защищаемого объекта. При этом датчики температуры устанавливаются на обмотке двигателя.

Термочувствительные защитные устройства: термисторы, позисторы

В качестве датчиков температуры получили применение термисторы и позисторы - полупроводниковые резисторы, изменяющие свое сопротивление от температуры. . Термисторы представляют собой полупроводниковые резисторы с большим отрицательным ТСК. При увеличении температуры сопротивление термистора уменьшается, что используется для схемы отключения двигателя. Для увеличения крутизны зависимости сопротивления от температуры, термисторы, наклеенные на три фазы, включаются параллельно (рисунок 1).


Рисунок 1 – Зависимость сопротивления позисторов и термисторов от температуры: а – последовательное соединение позисторов; б – параллельное соединение термисторов

Позисторы являются нелинейными резисторами с положительным ТСК. При достижении определенной температуры сопротивление позистора скачкообразно увеличивается на несколько порядков.

Для усиления этого эффекта позисторы разных фаз соединяются последовательно. Характеристика позисторов показана на рисунке.

Защита с помощью позистоpoв является более совершенной. В зависимости от класса изоляции обмоток двигателя берутся позисторы на температуру срабатывания =105, 115, 130, 145 и 160 . Эта температура называется классификационной. Позистор резко меняет сопротивление при температура за время не более 12 с. При сопротивление трёх последовательно включенных позисторов должно быть не более 1650 Ом, при температуре их сопротивление должно быть не менее 4000 Ом.

Гарантийный срок службы позисторов 20000 ч. Конструктивно позистор представляет собой диск диаметром 3.5 мм и толщиной 1 мм, покрытый кремне-органической эмалью, создающей необходимую влагостойкость и электрическую прочность изоляции.

Рассмотрим схему позисторной защиты, показанную на рисунке 2.


Рисунок 2 – Аппарат позисторной защиты с ручным возвратом: а – принципиальная схема; б – схема подключения к двигателю

К контактам 1, 2 схемы (рисунок 2, а) подключаются позисторы, установленные на всех трёх фазах двигателя (рисунок 2, б). Транзисторы VТ1, VT2 включены по схеме триггера Шмидта и работают в ключевом режиме. В цепь коллектора транзистора VT3 оконечного каскада включено выходное реле К, которое воздействует на обмотку пускателя.

При нормальной температуре обмотки двигателя и связанных с ним позисторов сопротивление последних мало. Сопротивление между точками 1-2 схемы также мало, транзистор VT1 закрыт (на базе малый отрицательный потенциал), транзистор VТ2 открыт (большой потенциал). Отрицательный потенциал на коллекторе транзисторе VT3 мал, и он закрыт. При этом ток в обмотке реле К недостаточен для его срабатывания.

При нагреве обмотки двигателя сопротивление позисторов увеличивается, и при определенном значении этого сопротивления отрицательный потенциал точки 3 достигает напряжения срабатывания триггера. Релейный режим триггера обеспечивается эммитерной обратной связью (сопротивление в цепи эммитера VТ1) и коллекторной обратной связью между коллектором VT2 и базой VT1. При срабатывании триггера VТ2 закрывается, а VT3 - открывается. Срабатывает реле К, замыкая цепи сигнализации и размыкая цепь электромагнита пускателя, после чего обмотка статора отключается от напряжения сети.

После охлаждения двигателя его пуск возможен после нажатия кнопки «возврат», при котором триггер возвращается в начальное положение.

В современных электродвигателях позисторы защиты устанавливаются на лобовой части обмоток двигателя. В двигателях прежних разработок позисторы можно приклеивать к лобовой части обмоток.

Достоинства и недостатки термисторной (позисторной) защиты

Термочувствительная защита электродвигателей предпочтительней в тех случаях, когда по току невозможно определить с достаточной точностью температуру электродвигателя. Это касается, прежде всего, электродвигателей с продолжительным периодом запуска, частыми операциями включения и отключения (повторно-кратковременный режим работы) или двигателей с регулируемым числом оборотов (при помощи преобразователей частоты). Термисторная защита эффективна также при сильном загрязнении электродвигателей или выходе из строя системы принудительного охлаждения.

Недостатками термисторной защиты является то, что с термисторами или позисторами выпускаются далеко не все типы электродвигателей. Это особенно касается электродвигателей отечественного производства. Термисторы и позисторы могут устанавливаться в электродвигатели только в условиях стационарных мастерских. Температурная характеристика термистора достаточно инерционна и сильно зависит от температуры окружающей среды и от условий эксплуатации самого электродвигателя.

Термисторная защита требует наличия специального электронного блока: термисторного устройства защиты электродвигателей, теплового или электронного реле перегрузки, в которых находятся блоки настройки и регулировки, а также выходные электромагнитные реле, служащие для отключения катушки пускателя или электромагнитного расцепителя.