Все о тюнинге авто

Встроенная защита электродвигателя. Электрический двигатель: комплексная релейная защита. Недостатки тепловых реле

Для защиты электродвигателей от коротких замыканий и перегрузок используют сочетание предохранителей с магнитными пускателями, а также автоматические выключатели. Отсутствие в ряде случаев технической возможности постоянной настройки тепловой защиты выдвинули новые требования к разработке встроенной температурной защиты.

Как показывает практика, встроенная температурная защита эффективно отключает электродвигатели при длительных перегрузках, неправильных процессах пуска и торможения, повышенной частоте включении, обрыве фаз, колебаниях напряжения сети в пределах 70...110% от номинального значения, заклинивании приводного механизма, включении электродвигателя с заклиненным ротором. Повышенной температуре окружающей среды, нарушениях в системе охлаждения.

Температурная защита состоит из температурных датчиков и управляющего устройства.

Температурными датчиками служат полупроводниковые термосопротивления - позисторы пли резисторы, встроенные в лобовую часть обмотки статора (по одному в каждую фазу).

Характерное свойство - высокая чувствительность в узком интервале температур. Например, промышленный позистор СТ5-1, который можно использовать в схеме встроенной температурной защиты электродвигателя, имеет в интервале температур от 60 до 100° практически постоянное сопротивление, а в интервале от 120 до 130° его сопротивление увеличивается в несколько тысяч раз.

В качестве температурных датчиков для устройств встроенной защиты применяют кобальтомарганцевые термосопротивления типа ТР-33, работающие в релейном режиме. Имеется шесть вариантов рабочих групп термосоиротивлений ТР-33, каждой из которых соответствует своп минимальная и максимальная рабочая температура в пределах 5°.

Встроенную защиту с термосопротивлениями ТР-33 настраивают в зависимости от класса изоляции защищаемого электродвигателя. Настройку осуществляют либо изменением напряжения, подаваемого на термосопротивлеиие. либо шунтированиям термосопротивленнй добавочными сопротивлениями.

Наибольшее практическое применение для датчиков встроенной температурной зашиты электродвигателей находят терморезисторы с положительным CT14-1A (t°ср-130°) или СТ 14-1 Б (t°ср -105°).

Терморезисторы СТ14-1А изготовляют в виде дисков диаметром 3 и толщиной 1,5 мм. Комплект таких датчиков (три диска из расчета один на фазу) является чувствительным органом защиты, подающим сигнал в управляющее устройство.

В настоящее время выпускают два вида устройств встроенной температурой защиты - УВТЗ-1 и УВТЗ-4А. Принцип их действия одинаков, хотя схема и конструктивное оформление различны.

Устройства температурной защиты унифицированы для всех типоразмеров электродвигателей, взаимозаменяемы и не требуют регулировки и настройки при монтаже и эксплуатации.

Управляющее устройство служит для усиления сигнала, поступающего от встроенных в обмотку статора электродвигателя температурных датчиков, и преобразования в сигнал, управляющий отключением (типа ПМЛ, ПМЕ и др.).

Устройство типа УВТЗ-1 состоит из преобразователя и выходного реле. В качестве выходного реле применяют РЗС-6, которое подает сигнал на управление магнитным пускателем.

В схеме автоматически осуществляется самоконтроль за ее работой, то есть обеспечивается гарантия отключения электродвигателя при возникновении неисправности в каком-либо элементе температурной защиты. При выходе из строя датчиков температуры или обрыве цепи их соединения с управляющим устройством последнее не позволяет включить электродвигатель в сеть.

В случае короткого замыкания в цени датчиков с управляющим устройством транзисторы будут закрыты, управляющий переход транзистора обесточен, реле отключается и своими контактами разрывает пень питания катушки магнитного пускателя.

Рис. 1. Схема электрическая принципиальная устройства встроенной температурной защиты электродвигателей УВТЗ-1

Датчики температуры устанавливают в асинхронные двигатели на заводе при их изготовлении или капитальном ремонте, а также в действующие электродвигатели во время эксплуатации. После их установки измеряют сопротивление всей цепи датчиков, которое при температуре 20 ±5° должно быть в пределах 120... 150 Ом.

Измерительный ток применяемого омметра не может превышать 50 мА. а напряжение - 2,5 В. Использовать для этих целей мегомметры не разрешается.

Измеряют сопротивление изоляции датчиков относительно обмотки и корпуса электродвигателя меггомметром на 500 В, причем величина этого сопротивления не должна превышать 0,5 МОм.

Устройство рассчитано для работы в вертикальном положении, допускает установку на стенах и конструкциях, не подверженных ударам или сильной вибрации, и не должно подвергаться постоянному нагреву, в том числе солнечному. Его можно размещать в станциях управления, сборных распределительных устройствах и отдельных шкафах.

Управляющее устройство соединяют с датчиком изолированным проводом сечением не менее 0,5 мм2 для медных проводов и 1,0 мм2 - для алюминиевых.

Проверяют работоспособность смонтированного устройства нажатием кнопки «Пуск» магнитного пускателя. При исправном электродвигателе и правильном соединении датчиков устройства и магнитного пускателя, а также при исправном их состоянии электродвигатель вращается.

Убедившись в его нормальной работе на холостом ходу, необходимо разомкнуть цепь датчиков в коробке выводов электродвигателя. Если при этом электродвигатель отключится от сети, значит, устройство встроенной защиты работает нормально. Повторно проверяют защиту путем замыкания накоротко цепи датчиков в коробке выводов. В этом случае электродвигатель также должен отключиться от сети.

В электродвигателях, как и в многих других электротехнических, устройствах, могут возникать аварийные ситуации. Если вовремя не принять меры, то в худшем случае, из-за поломки электродвигателя, могут выйти из строя и другие элементы энергосистемы.

Для повышения ресурса безаварийной работы двигателя и повышения эксплуатационной надежности, концерн Русэлпром предлагает использовать защиту двигателей.

Применение защиты удорожает двигатель, поэтому выбор типа и количества защит определяется не только технической, но и экономической целесообразностью их установки. Правильный выбор защиты двигателя позволяет получить необходимый эффект с обоснованными затратами.

Как правило, для двигателей напряжением до 1000 Вт предусматривается:

  • защита от коротких замыканий;
  • защита от перегрузки.

Короткое замыкание в электродвигателе может привести к росту тока, более чем в 12 раз в течение очень короткого промежутка времени (около 10 мс). Для защиты двигателей от коротких замыканий должны применяться предохранители или автоматические выключатели.

Защита от перегрузки устанавливается в тех случаях, когда возможна перегрузка механизма по технологическим причинам, а также при тяжелых условиях пуска и для ограничения длительности пуска при пониженном напряжении.

Для защиты двигателя от перегрузки используется:

  • Тепловая защита;
  • Температурная защита;
  • Максимально токовая защита;
  • Минимально токовая защита;
  • Фазочувствительная защита.

Температурная защита

Наиболее эффективной защитой двигателей является температурная защита .

Температурная защита реагирует на увеличение температуры наиболее нагретых частей двигателя с мощью встроенных температурных датчиков и через устройства температурной защиты воздействует на цепь управления контактора или пускателя и отключает двигатель.

Любой двигатель производства концерна «Русэлпром» по заказу потребителя может быть укомплектован встроенными температурными датчиками для защиты двигателей в аварийных режимах, следствием которых может быть нагрев обмотки до недопустимой температуры.

В качестве датчиков используются полупроводниковые терморезисторы с положительным температурным коэффициентом - позисторы. Датчики встраиваются в лобовые части обмотки статора со стороны противоположной вентилятору наружного обдува по одному в каждую фазу, соединяются последовательно. Концы цепи датчиков выводятся на специальные клеммы в коробке выводов. К этим клеммам подключают реле или иной аппарат, реагирующий на сигнал датчиков.

Датчики реагируют только на температуру, и их действие не зависит от причин возникновения опасного нагрева. Поэтому такая система обеспечивает защиту двигателя как в режимах с медленным нагреванием (перегрузка, работа на двух фазах), так и в режимах с быстрым нагреванием (заклинивание ротора, выход из строя подшипников и другое).

Согласно требованиям ГОСТ 27895 (МЭК 60034$11) температура срабатывания защиты должна соответствовать значениям, приведенным в таблице.

Пороги термозащиты

Характеристики датчиков температурной защиты

Двигатели с датчиками температурной защиты имеют встроенные в каждую фазу обмотки и соединённые последовательно терморезисторы типа СТ14-2-145 по ТУ11-85 ОЖО468.165ТУ или другие терморезисторы с аналогичными параметрами.

В вводном устройстве двигателей предусмотрены клеммы для подсоединения цепи терморезисторов к исполнительному устройству температурной защиты.

Температура срабатывания датчиков температурной защиты:

Срабатывание температурной защиты происходит при возрастании температуры обмотки до значения, указанного в таблице 13, и температуре позистора, указанной в таблице 13.1. Время срабатывания защиты не превышает 15 с. Исполнительное устройство температурной защиты должно отключать силовую цепь двигателя при достижении сопротивления цепи термодатчиков 2100- 450 Ом.

Сопротивление одного позистора составляет 30 - 140 Ом при 25 градусах C, сопротивление цепи из 3 позисторов составляет 250±160 Ом.

Сопротивление изоляции цепи терморезисторов относительно обмоток статора двигателя при температуре окружающей среды (25 +5)°C составляет:

  • В практически холодном состоянии двигателя находится в пределах от 120 до 480 Ом. Измерительное напряжение при контроле не более 2,5 В.
  • В номинальном режиме работы двигателей при установившемся тепловом состоянии (температура обмотки двигателя <= 140 °C) не более 1650 Ом.

Напряжение, подаваемое на цепь терморезисторов, не более 7,5 В.

Исполнительные устройства

В качестве исполнительного устройства температурной защиты применяется любое устройство позволяющее отключать силовую цепь двигателя при достижении цепью терморезисторов сопротивления в диапазоне 1650-2400 Ом. Время срабатывания устройства температурной защиты при этом должно быть не более 1 с.

Зашита асинхронных электродвигателей от перегрева традиционно реализуется на основе, тепловой токовой защиты. В подавляющем большинстве двигателей, находящихся в эксплуатации, используется тепловая токовая защита, которая недостаточно точно учитывает фактические температурные режимы работы электродвигателей, а также его температурные постоянные времени.

В косвенной тепловой защите асинхронного электродвигателя включают в цепи питания статорных обмоток асинхронною электродвигателя, а при превышении максимально допустимого тока статора, биметаллические пластины, нагреваясь, отключают питание статора от источника электроэнергии.

Недостатком этого метода является то, что защита реагирует не па температуру нагрева обмоток статора, а на количество выделенного тепла без учета времени работы в зоне перегрузок и реальных условий охлаждения асинхронного электродвигателя. Это не позволяет в полной мере использовать перегрузочную способность электродвигателя и снижает производительность оборудования, работающего в повторно-кратковременном режиме из-за ложных отключений.

Сложность конструкции , недостаточно высокая надежность систем защиты на их основе, привели к созданию тепловой защиты, реагирующей непосредственно на температуру защищаемого объекта. При этом датчики температуры устанавливаются на обмотке двигателя.

Термочувствительные защитные устройства: термисторы, позисторы

В качестве датчиков температуры получили применение термисторы и позисторы - полупроводниковые резисторы, изменяющие свое сопротивление от температуры. . Термисторы представляют собой полупроводниковые резисторы с большим отрицательным ТСК. При увеличении температуры сопротивление термистора уменьшается, что используется для схемы отключения двигателя. Для увеличения крутизны зависимости сопротивления от температуры, термисторы, наклеенные на три фазы, включаются параллельно (рисунок 1).


Рисунок 1 – Зависимость сопротивления позисторов и термисторов от температуры: а – последовательное соединение позисторов; б – параллельное соединение термисторов

Позисторы являются нелинейными резисторами с положительным ТСК. При достижении определенной температуры сопротивление позистора скачкообразно увеличивается на несколько порядков.

Для усиления этого эффекта позисторы разных фаз соединяются последовательно. Характеристика позисторов показана на рисунке.

Защита с помощью позистоpoв является более совершенной. В зависимости от класса изоляции обмоток двигателя берутся позисторы на температуру срабатывания =105, 115, 130, 145 и 160 . Эта температура называется классификационной. Позистор резко меняет сопротивление при температура за время не более 12 с. При сопротивление трёх последовательно включенных позисторов должно быть не более 1650 Ом, при температуре их сопротивление должно быть не менее 4000 Ом.

Гарантийный срок службы позисторов 20000 ч. Конструктивно позистор представляет собой диск диаметром 3.5 мм и толщиной 1 мм, покрытый кремне-органической эмалью, создающей необходимую влагостойкость и электрическую прочность изоляции.

Рассмотрим схему позисторной защиты, показанную на рисунке 2.


Рисунок 2 – Аппарат позисторной защиты с ручным возвратом: а – принципиальная схема; б – схема подключения к двигателю

К контактам 1, 2 схемы (рисунок 2, а) подключаются позисторы, установленные на всех трёх фазах двигателя (рисунок 2, б). Транзисторы VТ1, VT2 включены по схеме триггера Шмидта и работают в ключевом режиме. В цепь коллектора транзистора VT3 оконечного каскада включено выходное реле К, которое воздействует на обмотку пускателя.

При нормальной температуре обмотки двигателя и связанных с ним позисторов сопротивление последних мало. Сопротивление между точками 1-2 схемы также мало, транзистор VT1 закрыт (на базе малый отрицательный потенциал), транзистор VТ2 открыт (большой потенциал). Отрицательный потенциал на коллекторе транзисторе VT3 мал, и он закрыт. При этом ток в обмотке реле К недостаточен для его срабатывания.

При нагреве обмотки двигателя сопротивление позисторов увеличивается, и при определенном значении этого сопротивления отрицательный потенциал точки 3 достигает напряжения срабатывания триггера. Релейный режим триггера обеспечивается эммитерной обратной связью (сопротивление в цепи эммитера VТ1) и коллекторной обратной связью между коллектором VT2 и базой VT1. При срабатывании триггера VТ2 закрывается, а VT3 - открывается. Срабатывает реле К, замыкая цепи сигнализации и размыкая цепь электромагнита пускателя, после чего обмотка статора отключается от напряжения сети.

После охлаждения двигателя его пуск возможен после нажатия кнопки «возврат», при котором триггер возвращается в начальное положение.

В современных электродвигателях позисторы защиты устанавливаются на лобовой части обмоток двигателя. В двигателях прежних разработок позисторы можно приклеивать к лобовой части обмоток.

Достоинства и недостатки термисторной (позисторной) защиты

Термочувствительная защита электродвигателей предпочтительней в тех случаях, когда по току невозможно определить с достаточной точностью температуру электродвигателя. Это касается, прежде всего, электродвигателей с продолжительным периодом запуска, частыми операциями включения и отключения (повторно-кратковременный режим работы) или двигателей с регулируемым числом оборотов (при помощи преобразователей частоты). Термисторная защита эффективна также при сильном загрязнении электродвигателей или выходе из строя системы принудительного охлаждения.

Недостатками термисторной защиты является то, что с термисторами или позисторами выпускаются далеко не все типы электродвигателей. Это особенно касается электродвигателей отечественного производства. Термисторы и позисторы могут устанавливаться в электродвигатели только в условиях стационарных мастерских. Температурная характеристика термистора достаточно инерционна и сильно зависит от температуры окружающей среды и от условий эксплуатации самого электродвигателя.

Термисторная защита требует наличия специального электронного блока: термисторного устройства защиты электродвигателей, теплового или электронного реле перегрузки, в которых находятся блоки настройки и регулировки, а также выходные электромагнитные реле, служащие для отключения катушки пускателя или электромагнитного расцепителя.

«- Есть ли у Вас защита двигателя?
— Да, есть. Там сидит специальный человек, следит за двигателем. Когда легкий дымок с двигателя пойдет, его выключает, не дает ему сгореть.»

Это реальный диалог с одним из наших покупателей. Оставим в стороне вопрос о технической культуре и уровне образования, — здесь рассмотрим только технические вопросы как решить эту проблему.

От чего электродвигатель выходит из строя? При прохождении электрического тока через проводник в этом проводнике выделяется тепло. Поэтому электрический двигатель при работе, естественно, нагревается. Производителем рассчитано, что при номинальном токе двигатель не перегреется.

А вот если ток через обмотки двигателя по каким-то причинам увеличится — то электродвигатель начнет перегреваться, и если этот процесс не остановить — то в дальнейшем перегреется и выйдет из строя. В обмотках из-за перегрева начинает плавиться изоляция проводников и происходит короткое замыкание проводников. Поэтому одна из задач защиты - ограничит ток, протекающий через электродвигатель, не выше допустимого.

Одним из самых распространенных способов — это защита электродвигателя при помощи теплового реле. Тепловые реле применяются для защиты электродвигателей от перегрузок недопустимой продолжительности, а также от обрыва одной из фаз.

Конструктивно тепловое реле представляют собой набор биметаллических расцепителей (по одному на каждую фазу), по которым протекает ток электродвигателя, оказывающий тепловое действие на пластины. Под действием тепла происходит изгиб биметаллической пластины, приводящий в действие механизм расцепления. При этом происходит изменение состояния вспомогательных контактов, которые используются в цепях управления и сигнализации. Реле снабжаются биметаллическим температурным компенсатором с обратным прогибом по отношению к биметаллическим пластинам для компенсации зависимости от температуры окружающей среды, обладают возможностью ручного или автоматического взвода (возврата).

Реле имеет шкалу, калиброванную в амперах. В соответствии с международными стандартами шкала должна соответствовать значению номинального тока двигателя, а не тока срабатывания. Ток несрабатывания реле составляет 1,05 I ном. При перегрузке электродвигателя на 20% (1,2 I ном), произойдет его срабатывание в соответствии с токо-временной характеристикой.

Реле, в зависимости от конструкции, могут монтироваться непосредственно на магнитные пускатели, в корпуса пускателей или на щиты. Правильно подобранные тепловые реле защищают двигатель не только от перегрузки, но и от заклинивания ротора, перекоса фаз и от затянутого пуска.

Как правильно подобрать тепловое реле

Схема защиты электродвигателя при подключении его через магнитный пускатель с катушкой 380В и тепловым реле (нереверсивная схема подключения)

Схема состоит: из QF — автоматического выключателя;KM1 — магнитного пускателя; P — теплового реле; M — асинхронного двигателя; ПР — предохранителя; кнопки управления (С-стоп, Пуск) . Рассмотрим работу схемы в динамике.

Включаем питание QF — автоматическим выключателем, нажимаем кнопку «Пуск» своим нормально разомкнутым контактом подает напряжение на катушку КМ1 — магнитного пускателя. КМ1 – магнитный пускатель срабатывает и своими нормально разомкнутыми, силовыми контактами подает напряжение на двигатель. Для того чтобы не удерживать кнопку «Пуск», чтобы двигатель работал, нужно ее зашунтировать, нормально разомкнутым блок контактом КМ1 – магнитного пускателя.
При срабатывании пускателя блок контакт замыкается и можно отпустить кнопку «Пуск» ток побежит через блок контакт на КМ1 — катушку.
Отключаем двигатель, нажимаем кнопу «С – стоп», нормально замкнутый контакт размыкается и прекращается подача напряжение к КМ1 – катушке, сердечник пускателя под действием пружин возвращается в исходное положение, соответственно контакты возвращаются в нормальное состояние, отключая двигатель. При срабатывании теплового реле — «Р», размыкается нормально замкнутый контакт «Р», отключение происходит аналогично.

Недостатки тепловых реле

Следует отметить и недостатки тепловых реле. Иногда трудно подобрать реле из имеющихся в наличии так, чтобы ток теплового элемента соответствовал току электродвигателя. Кроме того, сами реле требуют защиты от короткого замыкания, поэтому в схемах должны быть предусмотрены предохранители или автоматы. Тепловые реле не способны защитить двигатель от режима холостого хода или недогрузки двигателя, причем иногда даже при обрыве одной из фаз. Поскольку тепловые процессы, происходящие в биметалле, носят достаточно инерционный характер, реле плохо защищает от перегрузок, связанных с быстропеременной нагрузкой на валу электродвигателя.
Если нагрев обмоток обусловлен неисправностью вентилятора (погнуты лопасти или проскальзывание на валу), загрязнением оребренной поверхности двигателя, тепловое реле тоже окажется бессильным, т. к. потребляемый ток не возрастает или возрастает незначительно. В таких случаях, только встроенная тепловая защита способна обнаружить опасное повышение температуры и вовремя отключить двигатель.

Александр Коваль
067-1717147
Статья отредактирована в ноябре 2015 года.

Асинхронный однофазный двигатель

В рубрике «Общее» на сайте «Насосы и принадлежности» рассмотрим эксплуатацию электрических двигателей. В процессе эксплуатации электродвигателей могут возникать различные неисправности. Мы будем рассматривать электродвигатели, которые эксплуатируются с насосным оборудованием. Очень важно заранее предусмотреть все возможные сбои и как можно надежнее защитить оборудование от сбоев. Перечень причин, которые могут привести к отказу оборудования, включает: качество электроснабжения, качество монтажа, условия эксплуатации. Качество электроснабжения: повышенное или пониженное напряжение, скачки напряжения, обрыв фазы.

Качество монтажа: неправильный или некачественный монтаж.

Условия эксплуатации: недостаточное охлаждение двигателя (обдув), высокая температура окружающей среды, пониженное атмосферное давление (работа на большой высоте над уровнем моря), высокая температура перекачиваемой жидкости, слишком большая вязкость перекачиваемой жидкости, частые включения/выключения электродвигателя, заклинивание ротора.

Число пусков в час

Очень часто в технических характеристиках к насосному оборудованию присутствует такой параметр, как количество пусков в час. Необходимость контролировать этот параметр заключается в том, что каждый раз, когда производится запуск электродвигателя, происходит пяти-семи кратное превышение номинального рабочего тока. Высокие пусковые токи нагревают обмотки статора двигателя. Если электродвигатель не успевает остывать из-за частых пусков, то это может привести к выходу его из строя или сокращению срока службы изоляции (пробою изоляции обмоток). Количество пусков, которое может происходить в течение часа, рассчитывает и определяет завод изготовитель. Эта информация размещается в технических характеристиках или в инструкции по эксплуатации.

Защита электродвигателей

Чтобы избежать непредвиденных сбоев и дорогостоящего ремонта электродвигателя в процессе эксплуатации, в первую очередь, необходимо обеспечить двигатель защитными устройствами. Защита электродвигателя имеет три уровня:

  • Внешняя защита от короткого замыкания. Самый простой способ – это установка внешних предохранителей.
  • Внешняя защита от перегрузок. Это защита по току.
  • Встроенная защита. Это защита от перегрева обмоток с помощью тепловых автоматических выключателей или датчиков PTС . Для встроенной тепловой защиты всегда требуется исполнительное внешнее устройство – пускатель для тепловых автоматических выключателей и реле контроля температуры обмотки двигателя, (как пример, TER-7 производства ETI Словения) для датчиков PTС.

Для защиты оборудования от перегрузок и короткого замыкания необходимо определить, какое устройство защиты будет использоваться. Оно должно автоматически отключать питание от сети. Плавкий предохранитель является простейшим устройством, выполняющим две функции. Как правило, плавкие предохранители соединяются между собой при помощи аварийного выключателя, который может отключить двигатель от сети питания.

Автоматический токовый выключатель

Автоматический токовый выключатель является устройством защиты от перегрузок по току. Он автоматически размыкает цепь при заданном значении перегрузки по току или возникновении короткого замыкания. Если токовый выключатель применяется в диапазоне своих рабочих параметров, размыкание и замыкание не наносит ему никакого вреда. Сразу же после отключения по перегрузке можно легко возобновить работу автоматического выключателя. Автоматические выключатели бывают двух видов: тепловые и магнитные.

Тепловые автоматические выключатели – это надёжный и экономичный тип защитных устройств, которые используются для электродвигателей. Конструктивно автоматический выключатель состоит из электромагнитного расцепителя, теплового расцепителя и дугогасящей камеры. Они могут выдерживать большие перегрузки по току, которые возникают во время запуска электродвигателя, и защищают электродвигатель при заклинивании ротора. Тепловые автоматические выключатели нечувствительны к напряжению, но чувствительны к температуре.

Магнитные автоматические выключатели являются точными, надёжными и экономичными. Магнитный пускатель – это комбинированный электрический прибор. В состав магнитного пускателя входят: контактор переменного тока, тепловое реле и кнопки включения и выключения. Магнитный автоматический выключатель нечувствителен к изменению температуры окружающей среды: она не влияет на предел его срабатывания, но чувствителен к изменению напряжения. Автоматические выключатели подбираются по номинальному току, потребляемому электродвигателем.

Реле перегрузки:

  • При пуске электродвигателя позволяют выдерживать временные перегрузки без разрыва цепи.
  • Размыкают цепь электродвигателя, если ток превышает предельно допустимое значение и возникает угроза повреждения электродвигателя.
  • Устанавливаются в исходное положение автоматически или вручную после устранения перегрузки.

Обозначение класса срабатывания

Как правило, реле перегрузки реагируют на условия перегрузки в соответствии с характеристикой срабатывания. Деление изделий на классы определяет, за какой период времени реле размыкает цепь при перегрузке. Наиболее часто встречающиеся классы: 10, 20 и 30. Цифры определяют время, необходимое реле для отключения. Реле перегрузки класса 10 срабатывает в течение 10 секунд и менее, при 600% номинального тока, реле класса 20 срабатывает в течение 20 секунд и менее, а реле класса 30 – в течение 30 секунд и менее.

Устройства внешней защиты

Устройства внешней защиты: плавкие предохранители, автоматические выключатели, – реагируют на превышение тока, который потребляет электродвигатель в процессе эксплуатации. Они предназначены для отключения электродвигателя, если ток превышает номинальное значение. Внешнее устройство защиты предохраняет двигатель от выхода из строя в случае блокировки ротора.

При перегреве обмоток электродвигателя этот вид защиты не работает. Примеры:

  • Когда в крышку вентилятора двигателя попадают посторонние предметы, или двигатель смонтирован крышкой вентилятора очень близко от стенки (недостаточно охлаждение), то происходит медленный нагрев до опасной температуры;
  • Очень высокая температура окружающей среды 40°С и выше;
  • Когда внешняя защита двигателя выставлена на слишком высокий ток срабатывания или настроена неправильно;
  • Когда происходят частые включения/выключения электродвигателя, то за короткий период времени пусковые токи могут перегреть обмотки двигателя.

Устройства внутренней защиты

Устройства внутренней защиты обмоток, такие как автоматические выключатели и терморезисторы, намного эффективнее, чем устройства внешней защиты. Это объясняется тем, что они встраиваются в обмотки статора и измеряют температуру непосредственно в обмотках. Самыми распространёнными устройствами внутренней защиты являются тепловые автоматические выключатели и терморезисторы PTC.

Тепловой автоматический выключатель и термостаты

Тепловые автоматические выключатели – это биметаллические пластины (таблетки), размыкающие цепь при увеличении температуры в обмотках (на рис).

Они имеют широкий диапазон температур отключения. Бывают двух видов: с нормально открытыми и нормально закрытыми контактами. Наиболее часто применяются таблетки с нормально закрытыми контактами. Одну или две таблетки встраивают в обмотки статора, соединяют последовательно и выводят на клеммную коробку. Затем при электрическом монтаже двигателя эти контакты напрямую подключают в цепь питания катушки пускателя или контактора. При достижении температуры в обмотках статора равной температуре срабатывания биметаллической пластины, происходит разрыв цепи питания пускателя, и двигатель останавливается. После остывания обмоток, контакты снова замыкаются, и двигатель включается в работу.

Терморезисторы PTC

Терморезисторы PTС (терморезисторы с положительным температурным коэффициентом сопротивления) встраиваться в обмотки электродвигателя заводом изготовителем. Обычно устанавливаются три последовательно соединенных датчика PTC: по одному в каждой обмотке. Цвета проводов датчиков помогают определить температуру срабатывания. Температура срабатывания терморезисторов находится в диапазоне от 90°C до 180°C с шагом 5°. (на рис)

Выводы терморезисторов подключаются к реле контроля температуры, которое отключает цепь питания двигателя при резком увеличении сопротивления. Терморезисторы имеют нелинейную характеристику зависимости сопротивления от температуры. При температуре окружающей среды, сопротивление трех терморезисторов равно примерно 200 Ом; но оно резко увеличится до 3 кОм при достижении температуры отключения реле. Реле контроля температуры обмотки двигателя отключает двигатель от цепи питания при достижении сопротивления 3,3 кОм. После снижения температуры сопротивление терморезисторов уменьшается, и когда сопротивление снижается до 1,8 кОм, реле включает двигатель в работу. Реле контроля температуры TER-7 имеет функцию контроля исправности датчиков, проверка на отсутствие обрыва и короткого замыкания. Функция «memory – память» при срабатывании реле, контакты остаются в разомкнутом состоянии до вмешательства обслуживающего персонала. Возврат в рабочее состояние происходит после нажатия на кнопку «reset – сброс».

Для надежной защиты электродвигателей в процессе эксплуатации необходимо использовать все три вида защит: внешнюю, внутреннюю и встроенную.

Спасибо.