Все о тюнинге авто

Общие рекомендации по адаптации растений. Реферат: Адаптация растений к окружающей среде Какие адаптации способствовали широкому распространению семейных растений

в биологии – развитие любого признака, который способствует выживанию вида и его размножению. Адаптации могут быть морфологическими, физиологическими или поведенческими.

Морфологические адаптации включают изменения формы или строения организма. Пример такой адаптации – твердый панцирь черепах, обеспечивающий защиту от хищных животных. Физиологические адаптации связаны с химическими процессами в организме. Так, запах цветка может служить для привлечения насекомых и тем самым способствовать опылению растения. Поведенческая адаптация связана с определенным аспектом жизнедеятельности животного. Типичный пример – зимний сон у медведя. Большинство адаптаций представляет собой сочетание перечисленных типов. Например, кровососание у комаров обеспечивается сложной комбинацией таких адаптаций, как развитие специализированных частей ротового аппарата, приспособленных к сосанию, формирование поискового поведения для нахождения животного-жертвы, а также выработка слюнными железами специальных секретов, которые предотвращают свертывание высасываемой крови.

Все растения и животные постоянно адаптируются к окружающей среде. Чтобы понять, как это происходит, необходимо рассматривать не только животное или растение в целом, но и генетическую основу адаптации.

Генетическая основа. У каждого вида программа развития признаков заложена в генетическом материале. Материал и закодированная в нем программа передаются от одного поколения другому, оставаясь относительно неизменными, благодаря чему представители того или иного вида выглядят и ведут себя почти одинаково. Однако в популяции организмов любого вида всегда присутствуют небольшие изменения генетического материала и, следовательно, вариации признаков отдельных особей. Именно из этих разнообразных генетических вариаций процесс приспособления отбирает те признаки или благоприятствует развитию таких признаков, которые в наибольшей степени увеличивают шансы на выживание и тем самым на сохранение генетического материала. Адаптация, таким образом, может рассматриваться как процесс, посредством которого генетический материал повышает свои шансы на сохранение в последующих поколениях. С этой точки зрения, каждый вид олицетворяет собой успешный способ сохранения определенного генетического материала.

Чтобы передать генетический материал, особь любого вида должна иметь возможность питаться, дожить до периода размножения, оставить потомство и затем распространить его на возможно большей территории.

Питание. Все растения и животные должны получать из окружающей среды энергию и различные вещества, прежде всего кислород, воду и неорганические соединения. Почти все растения используют энергию Солнца, трансформируя ее в процессе фотосинтеза (см. также ФОТОСИНТЕЗ) . Животные получают энергию, питаясь растениями или другими животными.

Каждый вид определенным образом приспособлен к тому, чтобы обеспечивать себя питанием. Ястребы имеют острые когти для захватывания добычи, а расположение глаз в передней части головы позволяет им оценить глубину пространства, что необходимо для охоты при полете на большой скорости. У других птиц, например цапель, развились длинные шея и ноги. Они добывают пищу, осторожно бродя по мелководью и подстерегая зазевавшихся водных животных. Дарвиновы вьюрки – группа близкородственных видов птиц с Галапагосских островов – представляют классический пример высокоспециализированной адаптации к разным способам питания. Благодаря тем или иным адаптивным морфологическим изменениям, в первую очередь в строении клюва, одни виды стали зерноядными, другие – насекомоядными.

Если обратиться к рыбам, то хищники, например акулы и барракуды, имеют острые зубы для поимки добычи. Другие, например мелкие анчоусы и сельди, добывают мелкие частицы пищи путем фильтрации морской воды через гребневидные жаберные тычинки.

У млекопитающих прекрасным примером адаптации к типу питания служат особенности строения зубов. Клыки и коренные зубы у леопардов и других кошачьих исключительно остры, что позволяет этим животным удерживать и разрывать тело жертвы. У оленей, лошадей, антилоп и других пастбищных животных большие коренные зубы имеют широкие ребристые поверхности, приспособленные для пережевывания травы и иной растительной пищи.

Разнообразные способы получения питательных веществ можно наблюдать не только у животных, но и у растений. Многие из них, в первую очередь бобовые – горох, клевер и другие – развили симбиотические, т.е. взаимовыгодные, отношения с бактериями: бактерии переводят атмосферный азот в химическую форму, доступную для растений, а растения предоставляют бактериям энергию. Насекомоядные растения, такие, как саррацения и росянка, получают азот из тел насекомых, пойманных ловчими листьями.

Защита. Окружающая среда состоит из живых и неживых компонентов. Живое окружение любого вида включает животных, питающихся особями этого вида. Адаптации хищных видов направлены на эффективную добычу пищи; виды-жертвы приспосабливаются, чтобы не стать добычей хищников.

Многие виды – потенциальные жертвы – имеют защитную или маскирующую окраску, которая скрывает их от хищников. Так, у некоторых видов оленей пятнистая шкура молодых особей незаметна на фоне чередующихся пятен света и тени, а зайцев-беляков трудно различить на фоне снежного покрова. Длинные тонкие тела насекомых-палочников тоже трудно увидеть, потому что они напоминают сучки или веточки кустов и деревьев.

У оленей, зайцев, кенгуру и многих других животных развились длинные ноги, позволяющие им убегать от хищников. Некоторые животные, например опоссумы и свиномордые ужи, даже выработали своеобразный способ поведения – имитацию смерти, которая повышает их шансы на выживание, поскольку многие хищники не едят падали.

Некоторые виды растений покрыты шипами или колючками, отпугивающими животных. Многие растения имеют отвратительный для животных вкус.

Факторы окружающей среды, в частности климатические, нередко ставят живые организмы в трудные условия. Например, животным и растениям часто приходится приспосабливаться к крайним значениям температуры. Животные спасаются от холода, используя изолирующий мех или перья, мигрируя в места с более теплым климатом или впадая в зимнюю спячку. Большинство растений переживает холода, переходя в состояние покоя, эквивалентное спячке у животных.

В жару охлаждение животного происходит за счет потоотделения или частого дыхания, увеличивающего испарение. Некоторые животные, в особенности пресмыкающиеся и земноводные, способны впадать в летнюю спячку, которая по сути аналогична зимней, но вызвана жарой, а не холодом. Другие просто ищут прохладное место.

Растения могут до некоторой степени поддерживать свою температуру, регулируя интенсивность испарения, которое имеет то же охлаждающее действие, что и потоотделение у животных.

Размножение. Критическим этапом в обеспечении непрерывности жизни является размножение – процесс, в ходе которого происходит передача генетического материала следующему поколению. Размножение имеет два важных аспекта: встречу разнополых особей для обмена генетическим материалом и выращивание потомства.

К числу адаптаций, обеспечивающих встречу особей разного пола, относится звуковая коммуникация. У некоторых видов большую роль в этом смысле играет обоняние. Например, котов сильно привлекает запах кошки в период течки. Многие насекомые выделяют т.н. аттрактанты – химические вещества, привлекающие особей противоположного пола. Запахи цветков являются эффективной адаптацией растений для привлечения насекомых-опылителей. Некоторые цветки сладко пахнут и привлекают питающихся нектаром пчел; другие пахнут отвратительно, привлекая мух, питающихся на падали.

Зрение тоже очень важно для встречи особей разного пола. У птиц брачное поведение самца, его пышные перья и яркая окраска привлекают самку и подготавливают ее к копуляции. Окраска цветка у растений часто указывает, какое животное необходимо для опыления этого растения. Например, цветки, опыляемые колибри, окрашены в красный цвет, который привлекает этих птиц.

Многие животные выработали способы защиты своего потомства в начальный период жизни. Большинство адаптаций такого рода относятся к поведенческим и включают такие действия одного или обоих родителей, которые повышают шансы на выживание детенышей. Большинство птиц строит гнезда, характерные для каждого вида. Однако некоторые виды, например воловья птица, откладывают яйца в гнезда других видов птиц и вверяют детенышей родительской заботе вида-хозяина. У многих птиц и млекопитающих, а также у некоторых рыб имеется период, когда один из родителей идет на большой риск, беря на себя функцию защиты потомства. Хотя такое поведение иногда грозит гибелью родителю, оно обеспечивает безопасность потомства и сохранение генетического материала.

Целый ряд видов животных и растений использует иную стратегию размножения: они производят на свет огромное число потомков и оставляют их незащищенными. В этом случае низкие шансы на выживание у отдельной подрастающей особи оказываются сбалансированы многочисленностью потомства. См. также РАЗМНОЖЕНИЕ.

Расселение. Большинство видов выработало механизмы для удаления потомства от тех мест, где оно появилось на свет. Этот процесс, называемый расселением, увеличивает вероятность того, что потомство будет подрастать на еще не занятой территории.

Большинство животных просто избегает мест, где слишком сильна конкуренция. Однако накапливаются свидетельства в пользу того, что расселение обусловлено генетическими механизмами.

Многие растения приспособились к распространению семян с помощью животных. Так, соплодия дурнишника имеют на поверхности крючочки, которыми они цепляются за шерсть проходящих мимо животных. Другие растения образуют вкусные мясистые плоды, например ягоды, которые поедаются животными; семена проходят через пищеварительный тракт и неповрежденными «высеваются» в другом месте. Для распространения растения используют и ветер. Например, ветром переносятся «пропеллеры» семян клена, а также семена ваточника, имеющие хохолки из тонких волосков. Степные растения типа перекати-поле, приобретающие к моменту созревания семян шарообразную форму, перегоняются ветром на большие расстояния, по пути рассеивая семена.

Выше были приведены лишь некоторые наиболее яркие примеры адаптаций. Однако практически каждый признак любого вида является результатом адаптации. Все эти признаки составляют гармоничную совокупность, что позволяет организму успешно вести свой особый образ жизни. Человек во всех его признаках, от структуры головного мозга до формы большого пальца на ноге, является результатом адаптации. Адаптивные признаки способствовали выживанию и размножению его предков, имевших те же самые признаки. В целом концепция адаптации имеет большое значение для всех направлений биологии. См. также НАСЛЕДСТВЕННОСТЬ.

ЛИТЕРАТУРА Левонтин Р.К. Адаптация . – В сб.: Эволюция. М., 1981

Понятие адаптации

Адаптация - это процесс приспособления живых организмов к определённым условиям внешней среды. Существуют следующие виды адаптации:

Экологические группы растений по отношению к свету:

  • а) адаптации животных к свету
  • б) Зеленым растениям свет нужен для образования хлорофилла, формирования гранильной структуры хлоропластов; он регулирует работу устричного аппарата, влияет на газообмен и транспирацию, активизирует ряд ферментов, стимулирует биосинтез белков и нуклеиновых кислот.

Свет влияет на деление и растяжение клеток, ростовые процессы и на развитие растений, определяет сроки цветения и плодоношения, оказывает формообразующее воздействие. Но самое большое значение имеет свет в воздушном питании растений, в использовании ими солнечной энергии в процессе фотосинтеза. С этим связаны основные адаптации растений по отношению к свету. Об этом свидетельствует весь ход эволюции наземных высших растений.

Фотоавтотрофы способны ассимилировать СО2, используя лучистую энергию Солнца и преобразуя ее в энергию химических связей в органических соединениях. Пурпурные и зеленые бактерии, имеющие бактериохлорофиллы, способны поглощать свет в длинноволновой части (максимумы в области 800--1100 нм). Это позволяет им существовать даже при наличии только невидимых инфракрасных лучей. Водоросли и высшие зеленые растения -- хлорофиллсодержащие организмы, распространение которых зависит от солнечного света.

На суше для высших фотоавтотрофных растений условия освещения практически везде благоприятны, и они растут повсюду, где позволяют климатические и почвенные условия, приспосабливаясь к световому режиму данного местообитания.

Водоросли обитают в водоемах, но встречаются и на суше, на поверхности разных предметов -- на стволах деревьев, на заборах, на скалах, на снегу, на поверхности почвы и в ее толще.

Световой режим любого местообитания определяется интенсивностью прямого и рассеянного света, количеством света (годовой суммарной радиацией), его спектральным составом, а также альбедо -- отражательной способностью поверхности, на которую падает свет. Перечисленные элементы светового режима очень переменчивы и зависят от географического положения, высоты над уровнем моря, от рельефа, состояния атмосферы, характера земной поверхности, растительности, от времени суток, сезона года, солнечной активности и глобальных изменений в атмосфера.

У растений возникают различные морфологические и физиологические адаптации к световому режиму местообитаний.

По требованию к условиям освещения принято делить растения на следующие экологические группы:

  • 1) светолюбивые (световые), или гелиофиты,-- растения открытых, постоянно хорошо освещаемых местообитаний;
  • 2) тенелюбивые (теневые), или сциофиты,-- растения нижних ярусов тенистых лесов, пещер и глубоководные растения; они плохо переносят сильное освещение прямыми солнечными лучами;
  • 3) теневыносливые, или факультативные гелиофиты,-- могут переносить большее или меньшее затенение, но хорошо растут и на свету; они легче других растений перестраиваются под влиянием изменяющихся условий освещения.
  • Б) Свет для животных необходимое условие видения, зрительной ориентации в пространстве. Рассеянные, отраженные от окружающих предметов лучи, воспринимаемые органами зрения животных, дают им значительную часть информации о внешнем мире. Развитие зрения у животных шло параллельно с развитием нервной системы.

Полнота зрительного восприятия окружающей среды зависит у животных в первую очередь от степени эволюционного развития. Примитивные глазки многих беспозвоночных -- это просто светочувствительные клетки, окруженные пигментом, а у одноклеточных -- светочувствительный участок цитоплазмы. Процесс восприятия света начинается с фотохимических изменений молекул зрительных пигментов, после чего возникает электрический импульс. Органы зрения из отдельных глазков не дают изображения предметов, а воспринимают только колебания освещенности, чередование света и тени, свидетельствующие об изменениях в окружающей среде. Образное видение возможно только при достаточно сложном устройстве глаза. Пауки, например, могут различать контуры движущихся предметов на расстоянии 1--2 см. Наиболее совершенные органы зрения -- глаза позвоночных, головоногих моллюсков и насекомых. Они позволяют воспринимать форму и размеры предметов, их цвет, определять расстояние. Способносгь к объемному видению зависит от угла расположения глаз и от степени перекрывания их полей зрения. Объемное зрение, например, характерно для человека, приматов, ряда птиц -- сов, соколов, орлов, грифов. Животные, у которых глаза расположены по бокам головы, имеют монокулярное, плоскостное зрение.

Предельная чувствительность высокоразвитого глаза огромна. Привыкший к темноте человек может различить свет, интенсивность которого определяется энергией всего пяти квантов, что близко к физически возможному пределу.

Понятие видимого света в некоторой мере условно, так как отдельные виды животных сильно различаются по способности воспринимать разные лучи солнечного спектра. Для человека область видимых лучей -- от фиолетовых до темно-красных.

Некоторые животные, например гремучие змеи, видят инфракрасную часть спектра и ловят добычу в темноте, ориентируясь при помощи органов зрения. Для пчел видимая часть спектра сдвинута в более коротковолновую область. Они воспринимают как цветовые значительную часть ультрафиолетовых лучей, но не различают красных.

Кроме эволюционного уровня группы, развитие зрения и его особенности зависят от экологической обстановки и образа жизни конкретных видов. У постоянных обитателей пещер, куда не проникает солнечный свет, глаза могут быть полностью или частично редуцированы, как, например, у слепых жуков жужелиц, протеев среди амфибий и др.

Способность к различению цвета в значительной мере зависит и от того, при каком спектральном составе излучения существует или активен вид. Большинство млекопитающих, ведущих происхождение от предков с сумеречной и ночной активностью, плохо различают цвета и видят все в черно-белом изображении (собачьи, кошачьи, хомяки и др.). Такое же зрение характерно для ночных птиц (совы, козодои). Дневные птицы имеют хорошо развитое цветовое зрение.

Жизнь при сумеречном освещении приводит часто к гипертрофии глаз. Огромные глаза, способные улавливать ничтожные доли света, свойственны ведущим ночной образ жизни лемурам, обезьянам лори, долгопятам, совам и др.

Животные ориентируются с помощью зрения во время дальних перелетов и миграций. Птицы, например, с поразительной точностью выбирают направление полета, преодолевая иногда многие тысячи километров от гнездовий до мест зимовок.

Доказано, что при таких дальних перелетах птицы хотя бы частично ориентируются по Солнцу и звездам, т. е. астрономическим источникам света. При вынужденном отклонении от курса они способны к навигации, т. е. к изменению ориентации, чтобы попасть в нужную точку Земли. При неполной облачности ориентация сохраняется, если видна, хотя бы часть неба. В сплошной туман птицы не летят или, если он застает их в пути, продолжают лететь вслепую и часто сбиваются с курса. Способность птиц к навигации доказана многими опытами.

Птицы, сидящие в клетках, в состоянии предмиграционного беспокойства всегда ориентируются в сторону зимовок, если она могут наблюдать за положением Солнца или звезд. Например, когда чечевиц перевезли с побережья Балтийского моря в Хабаровск, они изменили свою ориентацию в клетках с юго-восточной на юго-западную. Зимуют эти птицы в Индии. Таким образом, они способны правильно выбирать направление полета на зимовку из любой точки Земли. Днем птицы учитывают не только положение Солнца, но и смещение его в связи с широтой местности и временем суток. Опыты в планетарии показали, что ориентация птиц в клетках меняется, если менять перед ними картину звездного неба в соответствии с направлением предполагаемого перелета.

Навигационная способность птиц врожденная. Она не приобретается за счет жизненного опыта, а создается естественным отбором как система инстинктов. Точные механизмы такой ориентации еще плохо изучены. Гипотеза ориентации птиц в перелетах по астрономическим источникам света в настоящее время подкреплена материалами опытов и наблюдений.

Способность к подобного рода ориентации свойственна и другим группам животных. Среди насекомых она особенно развита у пчел. Пчелы, нашедшие нектар, передают другим информацию о том, куда лететь за взятком, используя в качестве ориентира положение Солнца. Пчела-разведчица, открывшая источник корма, возвращается в улей и начинает на сотах танец, совершая быстрые повороты. При этом она описывает фигуру в виде восьмерки, поперечная ось которой наклонена по отношению к вертикали. Угол наклона соответствует углу между направлениями на Солнце и на источник корма. Когда медосбор очень обилен, разведчицы сильно возбуждены и могут танцевать долго, в течение многих часов, указывая сборщицам путь к нектару. За время их танца угол наклона восьмерки постепенно смещается в соответствии с движением Солнца по небу, хотя пчелы в темном улье и не видят его. Если Солнце скрывается за облаками, пчелы ориентируются на поляризованный свет свободного участка неба. Плоскость поляризации света зависит от положения Солнца.

Реакции на неблагоприятные факторы среды только при некоторых условиях являются губительными для живых организмов, а в большинстве случаев они имеют адаптивное значение. Поэтому эти ответные реакции были названы Селье «общим адаптационным синдромом». В более поздних работах термины «стресс» и «общий адаптационный синдром» он употреблял как синонимы.

Адаптация — это генетически детерминированный процесс формирования защитных систем, которые обеспечивают повышение устойчивости и протекание онтогенеза в неблагоприятных для него условиях.

Адаптация является одним из важнейших механизмов, который повышает устойчивость биологической системы, в том числе растительного организма, в изменившихся условиях существования. Чем лучше организм адаптирован к какому-то фактору, тем он устойчивее к его колебаниям.

Генотипически обусловленная способность организма изменять метаболизм в определенных пределах в зависимости от действия внешней среды называется нормой реакции . Она контролируется генотипом и свойственна всем живым организмам. Большинство модификаций, которые возникают в пределах нормы реакции, имеют адаптивное значение. Они соответствуют изменениям среды обитания и обеспечивают лучшую выживаемость растений при колебаниях условии окружающей среды. В этой связи такие модификации имеют эволюционное значение. Термин «норма реакции» введен В.Л. Йогансеном (1909).

Чем больше способность вида или сорта модифицироваться в соответствии с окружающей средой, тем шире его норма реакции и выше способность к адаптации. Это свойство отличает устойчивые сорта сельскохозяйственных культур. Как правило, несильные и кратковременные изменения факторов внешней среды не приводят к существенным нарушениям физиологических функций растений. Это обусловлено их способностью сохранять относительное динамическое равновесие внутренней среды и устойчивость основных физиологических функций в условиях изменяющейся внешней среды. В то же время резкие и продолжительные воздействия приводят к нарушению многих функций растения, а нередко и к его гибели.

Адаптация включает в себя все процессы и приспособления (анатомические, морфологические, физиологические, поведенческие и др.), которые способствуют повышению устойчивости и способствуют выживанию вида.

1. Анатомо-морфологические приспособления . У некоторых представителей ксерофитов длина корневой системы достигает несколько десятков метров, что позволяет растению использовать грунтовую воду и не испытывать недостатка влаги в условиях почвенной и атмосферной засухи. У других ксерофитов наличие толстой кутикулы, опушенность листьев, превращение листьев в колючки уменьшают потери воды, что очень важно в условиях недостатка влаги.

Жгучие волоски и колючки защищают растения от поедания животными.

Деревья в тундре или на больших горных высотах имеют вид приземистых стелющихся кустарников, зимой они засыпаются снегом, который защищает их от сильных морозов.

В горных районах с большими суточными колебаниями температуры растения часто имеют форму распластанных подушек с плотно расположенными многочисленными стеблями. Это позволяет сохранять внутри подушек влагу и относительно равномерную в течение суток температуру.

У болотных и водных растений формируется специальная воздухоносная паренхима (аэренхима), которая является резервуаром воздуха и облегчает дыхание частей растения, погруженных в воду.

2. Физиолого-биохимические приспособления . У суккулентов приспособлением для произрастания в условиях пустынь и полупустынь является усвоение СО 2 в ходе фотосинтеза по CAM-пути. У этих растений устьица днем закрыты. Таким образом, растение сохраняет внутренние запасы воды от испарения. В пустынях вода является главным фактором, ограничивающим рост растений. Устьица открываются ночью, и в это время происходит поступление СО 2 в фотосинтезирующие ткани. Последующее вовлечение СО 2 в фотосинтетический цикл происходит днем уже при закрытых устьицах.

К физиолого-биохимическим приспособлениям относятся способность устьиц открываться и закрываться, в зависимости от внешних условий. Синтез в клетках абсцизовой кислоты, пролина, защитных белков, фитоалексинов, фитонцидов, повышение активности ферментов, противодействующих окислительному распаду органических веществ, накопление в клетках сахаров и ряд других изменений в обмене веществ содействует повышению устойчивости растений к неблагоприятным условиям внешней среды.

Одна и та же биохимическая реакция может осуществляться несколькими молекулярными формами одного и того же фермента (изоферментами), при этом каждая изоформа проявляет каталитическую активность в относительно узком диапазоне некоторого параметра окружающей среды, например температуры. Наличие целого ряда изоферментов позволяет растению осуществлять реакцию в значительно более широком диапазоне температур, по сравнению с каждым отдельным изоферментом. Это дает возможность растению успешно выполнять жизненные функции в изменяющихся температурных условиях.

3. Поведенческие приспособления, или избегание действия неблагоприятного фактора . Примером могут служить эфемеры и эфемероиды (мак, звездчатка, крокусы, тюльпаны, подснежники). Они проходят весь цикл своего развития весной за 1,5-2 месяца, еще до наступления жары и засухи. Таким образом, они как бы уходят, или избегают попадания под влияние стрессора. Подобным образом раннеспелые сорта сельскохозяйственных культур формируют урожай до наступления неблагоприятных сезонных явлений: августовских туманов, дождей, заморозков. Поэтому селекция многих сельскохозяйственных культур направлена на создание раннеспелых сортов. Многолетние растения зимуют в виде корневищ и луковиц в почве под снегом, защищающим их от вымерзания.

Адаптация растений к неблагоприятным факторам осуществляется одновременно на многих уровнях регуляции — от отдельной клетки до фитоценоза. Чем выше уровень организации (клетка организм, популяция) тем большее число механизмов одновременно участвует в адаптации растений к стрессам.

Регуляция метаболических и адаптационных процессов внутри клетки осуществляется с помощью систем: метаболической (ферментативной); генетической; мембранной. Эти системы тесно связаны между собой. Так, свойства мембран зависят от генной активности, а дифференциальная активность самих генов находится под контролем мембран. Синтез ферментов и их активность контролируются на генетическом уровне, в то же время ферменты регулируют нуклеиновый обмен в клетке.

На организменном уровне к клеточным механизмам адаптации добавляются новые, отражающие взаимодействие органов. В неблагоприятных условиях растения создают и сохраняют такое количество плодоэлементов, которое в достаточном количестве обеспечено необходимыми веществами, чтобы сформировать полноценные семена. Например, в соцветиях культурных злаков и в кронах плодовых деревьев в неблагоприятных условиях более половины заложившихся завязей могут опасть. Такие изменения основаны на конкурентных отношениях между органами за физиологически активные и питательные вещества.

В условиях стрессов резко ускоряются процессы старения и опадения нижних листьев. При этом нужные растениям вещества перемещаются из них в молодые органы, отвечая стратегии выживания организма. Благодаря реутилизации питательных веществ из нижних листьев сохраняются жизнеспособными более молодые — верхние листья.

Действуют механизмы регенерации утраченных органов. Например, поверхность ранения покрывается вторичной покровной тканью (раневой перидермой), рана на стволе или ветке зарубцовывается наплывами (каллюсами). При утрате верхушечного побега у растений пробуждаются спящие почки и усиленно развиваются боковые побеги. Весеннее восстановление листьев вместо опавших осенью — это также пример естественной регенерации органов. Регенерация как биологическое приспособление, обеспечивающее вегетативное размножение растений отрезками корня, корневища, слоевища, стеблевыми и листовыми черенками, изолированными клетками, отдельными протопластами, имеет большое практическое значение для растениеводства, плодоводства, лесоводства, декоративного садоводства и пр.

В процессах защиты и адаптации на уровне растения участвует и гормональная система. Например, при действии неблагоприятных условий в растении резко возрастает содержание ингибиторов роста: этилена и абсциссой кислоты. Они снижают обмен веществ, тормозят ростовые процессы, ускоряют старение, опадение органов, переход растения в состояние покоя. Торможение функциональной активности в условиях стресса под влиянием ингибиторов роста является характерной для растений реакцией. Одновременно с этим в тканях снижается содержание стимуляторов роста: цитокинина, ауксина и гиббереллинов.

На популяционном уровне присоединяется отбор, который приводит к появлению более приспособленных организмов. Возможность отбора определяется существованием внутрипопуляционной изменчивости устойчивости растений к разным факторам внешней среды. Примером внутрипопуляционной изменчивости по устойчивости может служить недружность появления всходов на засоленной почве и увеличение варьирования сроков прорастания при усилении действия стрессора.

Вид в современном представлении состоит из большого числа биотипов — более мелких экологических единиц, генетически одинаковых, но проявляющих разную устойчивость к факторам внешней среды. В различных условиях не все биотипы одинаково жизненны, и в результате конкуренции остаются лишь те из них, которые наиболее отвечают данным условиям. То есть, устойчивость популяции (сорта) к тому или иному фактору определяется устойчивостью составляющих популяцию организмов. Устойчивые сорта имеют в своем составе набор биотипов, обеспечивающих хорошую продуктивность даже в неблагоприятных условиях.

Вместе с тем, в процессе многолетнего культивирования у сортов изменяется состав и соотношение биотипов в популяции, что отражается на продуктивности и качестве сорта, часто не в лучшую сторону.

Итак, адаптация включает в себя все процессы и приспособления, повышающие устойчивость растений к неблагоприятным условиям среды (анатомические, морфологические, физиологические, биохимические, поведенческие, популяционные и др.)

Но для выбора наиболее эффективного пути адаптации главным является время, в течение которого организм должен приспособиться к новым условиям.

При внезапном действии экстремального фактора ответ не может быть отложен, он должен последовать незамедлительно, чтобы исключить необратимые повреждения растения. При длительных воздействиях небольшой силы адаптационные перестройки происходят постепенно, при этом увеличивается выбор возможных стратегий.

В этой связи различают три главные стратегии адаптации: эволюционные , онтогенетические и срочные . Задача стратегии — эффективное использование имеющихся ресурсов для достижения основной цели — выживания организма в условиях стресса. Стратегия адаптации направлена на поддержание структурной целостности жизненно важных макромолекул и функциональной активности клеточных структур, сохранение систем регуляции жизнедеятельности, обеспечение растений энергией.

Эволюционные, или филогенетические адаптации (филогенез — развитие биологического вида во времени) — это адаптации, возникающие в ходе эволюционного процесса на основе генетических мутаций, отбора и передающиеся по наследству. Они являются наиболее надежными для выживания растений.

У каждого вида растений в процессе эволюции выработались определенные потребности к условиям существования и приспособленность к занимаемой им экологической нише, стойкое приспособление организма к среде обитания. Влаголюбие и теневыносливость, жароустойчивость, холодоустойчивость и другие экологические особенности конкретных видов растений сформировались в результате длительного действия соответствующих условий. Так, теплолюбивые и короткодневные растения характерны для южных широт, менее требовательные к теплу и длиннодневные растения — для северных. Хорошо известны многочисленные эволюционные адаптации к засухе растений-ксерофитов: экономное расходование воды, глубоко залегающая корневая система, сбрасывание листьев и переход в состояние покоя и другие приспособления.

В этой связи сорта сельскохозяйственных растений проявляют устойчивость именно к тем факторам внешней среды, на фоне которых проводится селекция и отбор продуктивных форм. Если отбор проходит в ряде последовательных генераций на фоне постоянного влияния какого-либо неблагоприятного фактора, то устойчивость сорта к нему может быть существенно увеличена. Закономерно, что сорта селекции НИИ сельского хозяйства Юго-Востока (г. Саратов), более устойчивы к засухе, чем сорта, созданные в селекционных центрах Московской области. Таким же путем в экологических зонах с неблагоприятными почвенноклиматическими условиями сформировались устойчивые местные сорта растений, а эндемичные виды растений устойчивы именно к тому стрессору, который выражен в ареале их обитания.

Характеристика устойчивости сортов яровой пшеницы из коллекции Всероссийского института растениеводства (Семенов и др., 2005)

Сорт Происхождение Устойчивость
Энита Подмосковье Средне засухоустойчивый
Саратовская 29 Саратовская обл. Засухоустойчивый
Комета Свердловская обл. Засухоустойчивый
Каразино Бразилия Кислотоустойчивый
Прелюдия Бразилия Кислотоустойчивый
Колониас Бразилия Кислотоустойчивый
Тринтани Бразилия Кислотоустойчивый
ППГ-56 Казахстан Солеустойчивый
Ошская Киргизия Солеустойчивый
Сурхак 5688 Таджикистан Солеустойчивый
Мессель Норвегия Соленеустойчивый

В природной обстановке условия среды обычно изменяются очень быстро, и времени, в течение которого стрессовый фактор достигает повреждающего уровня, недостаточно для формирования эволюционных приспособлений. В этих случаях растения используют не постоянные, а индуцируемые стрессором защитные механизмы, формирование которых генетически предопределено (детерминировано).

Онтогенетические (фенотипические) адаптации не связаны с генетическими мутациями и не передаются по наследству. Формирование такого рода адаптаций требует сравнительно много времени, поэтому их называют долговременными адаптациями. Одним из таких механизмов является способность ряда растений формировать водосберегающий путь фотосинтеза CAM-типа в условиях водного дефицита, вызванного засухой, засолением, действием низких температур и других стрессорами.

Эта адаптация связана с индукцией экспрессии «неактивного» в нормальных условиях гена фосфоенолпируваткарбоксилазы и генов других ферментов CAM-пути усвоения СО 2 , с биосинтезом осмолитов (пролина), с активацией антиоксидантных систем и изменением суточных ритмов устьичных движений. Все это приводит к очень экономному расходованию воды.

У полевых культур, например, у кукурузы, аэренхима в обычных условиях произрастания отсутствует. Но в условиях затопления и недостатка в тканях кислорода в корнях у нее происходит гибель части клеток первичной коры корня и стебля (апоптоз, или программируемая смерть клеток). На их месте образуются полости, по которым кислород из надземной части растения транспортируется в корневую систему. Сигналом для гибели клеток является синтез этилена.

Срочная адаптация происходит при быстрых и интенсивных изменениях условий обитания. В основе ее лежит образование и функционирование шоковых защитных систем. К шоковым защитным системам относятся, например, система белков теплового шока, которая образуется в ответ на быстрое повышение температуры. Эти механизмы обеспечивают кратковременные условия выживания при действии повреждающего фактора и тем самым создают предпосылки для формирования более надежных долговременных специализированных механизмов адаптации. Примером специализированных механизмов адаптации является новообразование антифризных белков при низких температурах или синтез сахаров в процессе перезимовки озимых культур. Вместе с тем, если повреждающее действие фактора превышает защитные и репарационные возможности организма, то неминуемо наступает смерть. В этом случае организм погибает на этапе срочной или на этапе специализированной адаптации в зависимости от интенсивности и продолжительности действия экстремального фактора.

Различают специфические и неспецифические (общие) ответные реакции растений на стрессор.

Неспецифические реакции не зависят от природы действующего фактора. Они одни и те же при действии высокой и низкой температуры, недостатка или избытка влаги, высокой концентрации солей в почве или вредных газов в воздухе. Во всех случаях в клетках растений повышается проницаемость мембран, нарушается дыхание, возрастает гидролитический распад веществ, увеличивается синтез этилена и абсцизовой кислоты, тормозится деление и растяжение клеток.

В таблице представлен комплекс неспецифических изменений, протекающих у растений под влиянием различных факторов внешней среды.

Изменение физиологических параметров у растений под действием стрессовых условий (по Г.В, Удовенко, 1995)

Параметры Характер изменения параметров в условиях
засухи засоления высокой температуры низкой температуры
Концентрация ионов в тканях Растет Растет Растет Растет
Активность воды в клетке Падает Падает Падает Падает
Осмотический потенциал клетки Растет Растет Растет Растет
Водоудерживающая способность Растет Растет Растет
Водный дефицит Растет Растет Растет
Проницаемость протоплазмы Растет Растет Растет
Интенсивность транспирации Падает Падает Растет Падает
Эффективность транспирации Падает Падает Падает Падает
Энергетическая эффективность дыхания Падает Падает Падает
Интенсивность дыхания Растет Растет Растет
Фотофосфорилирование Снижается Снижается Снижается
Стабилизация ядерной ДНК Растет Растет Растет Растет
Функциональнаяя активность ДНК Снижается Снижается Снижается Снижается
Концентрация пролина Растет Растет Растет
Содержание водорастворимых белков Растет Растет Растет Растет
Синтетические реакции Подавлены Подавлены Подавлены Подавлены
Поглощение ионов корнями Подавлено Подавлено Подавлено Подавлено
Транспорт веществ Подавлен Подавлен Подавлен Подавлен
Концентрация пигментов Падает Падает Падает Падает
Деление клеток Тормозится Тормозится
Растяжение клеток Подавлено Подавлено
Число плодоэлементов Снижено Снижено Снижено Снижено
Старение органов Ускорено Ускорено Ускорено
Биологический урожай Понижен Понижен Понижен Понижен

Исходя из данных таблицы видно, что устойчивость растений к нескольким факторам сопровождается однонаправленными физиологическими изменениями. Это дает основание считать, что повышение устойчивости растений к одному фактору может сопровождаться повышением устойчивости к другому. Это подтверждено экспериментами.

Опытами в Институте физиологии растений РАН (Вл. В. Кузнецов и др.) показано, что кратковременная тепловая обработка растений хлопчатника сопровождается повышением их устойчивости к последующему засолению. А адаптация растений к засолению приводит к повышению их устойчивости к высокой температуре. Тепловой шок повышает способность растений приспосабливаться к последующей засухе и, наоборот, в процессе засухи повышается устойчивость организма к высокой температуре. Кратковременное воздействие высокой температурой повышает устойчивость к тяжелым металлам и УФ-Б облучению. Предшествующая засуха способствует выживанию растений в условиях засоления или холода.

Процесс повышения устойчивости организма к данному экологическому фактору в результате адаптации к фактору иной природы называется кросс-адаптацией .

Для изучения общих (неспецифических) механизмов устойчивости большой интерес представляет ответ растений на факторы, вызывающие у растений водный дефицит: на засоление, засуху, низкие и высокие температуры и некоторые другие. На уровне целого организма все растения реагируют на водный дефицит одинаково. Характерно угнетение роста побегов, усиление роста корневой системы, синтеза абсцизовой кислоты, снижение устьичной проводимости. Спустя некоторое время, ускоренно стареют нижние листья, и наблюдается их гибель. Все эти реакции направлены на снижение расходования воды за счет сокращения испаряющей поверхности, а также за счет увеличения поглотительной деятельности корня.

Специфические реакции — это реакции на действие какого-либо одного стрессового фактора. Так, фитоалексины (вещества со свойствами антибиотиков) синтезируются в растениях в ответ на контакт с болезнетворными микроорганизмами (патогенами).

Специфичность или не специфичность ответных реакций, подразумевает, с одной стороны, отношение растения к различным стрессорам и, с другой стороны, характерность реакций растений различных видов и сортов на один и тот же стрессор.

Проявление специфических и неспецифических ответных реакций растений зависит от силы стресса и скорости его развития. Специфические ответные реакции возникают чаще, если стресс развивается медленно, и организм успевает перестроиться и приспособиться к нему. Неспецифические реакции обычно возникают при более кратковременном и сильном действии стрессора. Функционирование неспецифических (общих) механизмов устойчивости позволяет растению избегать больших затрат энергии для формирования специализированных (специфических) механизмов адаптации в ответ на любое отклонение от нормы условий их обитания.

Устойчивость растений к стрессовому воздействию зависит от фазы онтогенеза. Наиболее устойчивы растения и органы растений в покоящемся состоянии: в виде семян, луковиц; древесные многолетние — в состоянии глубокого покоя после листопада. Наиболее чувствительны растения в молодом возрасте, так как в условиях стресса процессы роста повреждаются в первую очередь. Вторым критическим периодом является период формирования гамет и оплодотворения. Действие стресса в этот период приводит к снижению репродуктивной функции растений и снижению урожая.

Если стрессовые условия повторяются и имеют небольшую интенсивность, то они способствуют закаливанию растений. На этом основаны методы повышения устойчивости к низким температурам, жаре, засолению, повышенному содержанию в воздухе вредных газов.

Надежность растительного организма определяется его способностью не допускать или ликвидировать сбои на разных уровнях биологической организации: молекулярном, субклеточном, клеточном, тканевом, органном, организменном и популяционном.

Для предотвращения сбоев в жизнедеятельности растений под влиянием неблагоприятных факторов используются принципы избыточности , гетерогенности функционально равнозначных компонентов , системы репарации утраченных структур .

Избыточность структур и функциональных возможностей — один из основных способов обеспечения надежности систем. Избыточность и резервирование имеет многообразные проявления. На субклеточном уровне повышению надежности растительного организма способствуют резервирование и дублирование генетического материала. Это обеспечивается, например, двойной спиралью ДНК, увеличением плоидности. Надежность функционирования растительного организма в изменяющихся условиях поддерживается также благодаря наличию разнообразных молекул информационной РНК и образованию гетерогенных полипептидов. К ним относятся и изоферменты, которые катализируют одну и ту же реакцию, но отличаются по свои физико-химическим свойствам и устойчивостью структуры молекул в изменяющихся условиях среды.

На уровне клетки пример резервирования — избыток клеточных органелл. Так, установлено, что для обеспечения растения продуктами фотосинтеза достаточно части имеющихся хлоропластов. Остальные хлоропласты как бы остаются в резерве. То же касается и общего содержания хлорофилла. Избыточность проявляется также в большом накоплении предшественников для биосинтеза многих соединений.

На организменном уровне принцип избыточности выражается в образовании и в разновременной закладке большего, чем требуется для смены поколений, числа побегов, цветков, колосков, в огромном количестве пыльцы, семязачатков, семян.

На популяционном уровне принцип избыточности проявляется в большом числе особей, различающихся по устойчивости к тому или иному стрессовому фактору.

Системы репарации также работают на разных уровнях — молекулярном, клеточном, организменном, популяционном и биоценотическом. Репаративные процессы идут с затратой энергии и пластических веществ, поэтому репарация возможна только при сохранении достаточной интенсивности обмена веществ. Если обмен веществ прекращается, то прекращается и репарация. В экстремальных условиях внешней среды особенно большое значение имеет сохранение дыхания, так как именно дыхание обеспечивает энергией репарационные процессы.

Восстановительная способность клеток адаптированных организмов определяется устойчивостью их белков к денатурации, а именно устойчивостью связей, которые определяют вторичную, третичную и четвертичную структуру белка. Например, устойчивость зрелых семян к высоким температурам, как правило, связана с тем, что после обезвоживания их белки приобретают устойчивость к денатурации.

Главным источником энергетического материала как субстрата дыхания является фотосинтез, поэтому от устойчивости и способности фотосинтетического аппарата восстанавливаться после повреждений зависит энергообеспечение клетки и связанные с ним репарационные процессы. Для поддержания фотосинтеза в экстремальных условиях в растениях активизируется синтез компонентов мембран тилакоидов, происходит торможение окисления липидов, восстанавливается ультраструктура пластид.

На организменном уровне примером регенерации может служить развитие замещающих побегов, пробуждение спящих почек при повреждении точек роста.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

    У высших растений происходит насасывание воды из почвы корневой системой, проведение ее вместе с растворенными веществами к отдельным органам и клеткам и выведение путем транспирации . В водном обмене у высших растений около 5 % воды используется в ходе фотосинтеза , остальная часть идет на компенсацию испарения и поддержание осмотического давления.

    Вода, поступающая из почвы в растения, почти полностью испаряется через поверхность листьев. Это явление называется транспирацией. Транспирация - уникальное явление в наземных экосистемах, играющее важную роль в энергетике экосистем. Рост растений существенно зависит от транспирации. Если влажность воздуха слишком велика, как, например, в тропическом лесу, где относительная влажность приближается к 100 %, то деревья отстают в росте. В этих лесах большая часть растительности представлена эпифитами, по-видимому, из-за отсутствия "транспирационной тяги".

    Отношение роста растений (чистой продукции) к количеству транспирированной воды называется эффективностью транспирации . Она выражается в граммах сухого вещества на 1000 г транспирированной воды. Для большинства видов сельскохозяйственных культур и диких видов растений эффективность транспирации равна или менее 2. У засухоустойчивых растений (сорго, просо) она равна 4. У растительности пустынь она не намного больше, так как адаптация у них выражается не в уменьшении транспирации, а в способности прекращать рост при отсутствии воды. В сухой сезон эти растения сбрасывают листья или, как кактусы, закрывают на дневное время устьица.

    Растения сухого климата приспосабливается морфологическими изменениями, редукцией вегетативных органов, особенно листьев.

Адаптации животных

      Животные теряют влагу с испарениями, а также путем выделения конечных продуктов обмена веществ. Компенсацией потерь воды у животных служит ее поступление с пищей и питьем. (н апример, большинство амфибий, некоторые насекомые и клещи).

      Большая часть животных пустынь никогда не пьет, они удовлетворяют свои потребности за счет воды, поступившей с пищей

      Другие всасывают ее через покровы тела в жидком или парообразном состоянии .

      В неблагоприятных условиях животные часто сами регулируют свое поведение так, чтобы избежать недостатка влаги: переходят в защищенные от иссушения места, ведут ночной образ жизни. Многие животные не покидают пределов переувлажненных местообитаний.

      Другие животные получает воду в процессе окисления жиров . Например, верблюд, и насекомые - рисовый и амбарный долгоносик и другие.

Классификация организмов по отношению к влажности среды

Гидатофиты - это водные растения.

Гидрофиты - это растения наземно-водные.

Гигрофиты - наземные растения живущие в условиях повышенной влажности.

Мезофиты - это растения, произрастающие при среднем увлажнении

Ксерофиты - это растения произрастающие с недостаточным увлажнением. Они в свою очередь делятся на:

Суккуленты - сочные растения (кактусы).

Склерофиты - это растения с узкими и мелкими листьями, и свернутыми в трубочки.

Осадки, тесно связанные с влажностью воздуха, представляют собой результат конденсации и кристаллизации водяных паров в высоких слоях атмосферы. В приземном слое воздуха образуются росы, туманы, а при низких температурах наблю­дается кристаллизация влаги - выпадает иней.

Одна из основных физиологических функций любого организма - поддержание на достаточном уровне количества воды в теле. В процессе эволюции у организмов сформировались разнообразные приспособления к добыванию и экономному расходованию воды, а также к переживанию засушливого периода. Одни животные пустыни получают воду из пищи, другие за счет окисления своевременно запасенных жиров (например, верблюд, способный путем биологического окисления из 100 г жира получить 107 г метаболической воды); при этом у них минимальна водопроницаемость наружных покровов тела, преимущественно ночной образ жизни и т. д. При периодической засушливости характерно впадание в состояние покоя с минимальной интенсивностью обмена веществ. Наземные растения получают воду главным образом из почвы. Малое количество осадков, быстрый дренаж, интенсивное испарение либо сочетания этих факторов ведут к иссушению, а избыток влаги - к переувлажнению и заболачиванию почв.

Баланс влаги зависит от разницы между количеством выпавших осадков и количеством воды, испарившейся с поверхностей растений и почвы, а также путем транспирации.

4. Влияние концентрации биогенных элементов, солености, рН, газового состава среды, течений и ветера, гравитация, электромагнитных полей на организмы.

Биогенные элементы химические элементы, постоянно входящие в состав организмов и имеющие определённое биологическое значение. Прежде всего это кислород (составляющий 70% массы организмов), углерод (18%), водород (10%), кальций, азот, калий, фосфор, магний, сера, хлор, натрий, железо. Эти элементы входят в состав всех живых организмов, составляют их основную массу и играют большую роль в процессах жизнедеятельности.

Многие элементы имеют большое значение только для определённых групп живых существ (например, бор необходим для растений, ванадий - для асцидий и т.п.). Содержание тех или иных элементов в организмах зависит не только от их видовых особенностей, но и от состава среды, пищи (в частности, для растений - от концентрации и растворимости тех или иных почвенных солей), экологических особенностей организма и других факторов. Элементы, постоянно содержащиеся в организмах млекопитающих, по их изученности и значению можно разделить на 3 группы: элементы, входящие в состав биологически активных соединений (ферменты, гормоны, витамины, пигменты) , они являются незаменимыми; элементы, физиологическая и биохимическая роль которых мало выяснена или неизвестна.

Соленость

Водный обмен теснейшим образом связан с солевым обменом. Он приобретает особое значение для водных организмов (гидробионтов ).

Для всех водных организмов характерно наличие проницаемых для воды покровов тела, поэтому различие в концентрации растворенных в воде солей и солей, определяющих осмотическое давление в клетках организма, ток. создает осмотический Он направлен в сторону большего давления.

У гидробионтов, обитающих в морских и пресноводных экосистемах наблюдаются существенные отличия в адаптациях к концентрации растворенных в водной среде солей.

У большинства морских организмов внутриклеточная концентрация солей близка к таковой в морской воде.

Любые изменения внешней концентрации приводят к пассивному изменению осмотического тока.

Внутриклеточное осмотическое давление меняется соответственно изменению концентрации солей в водной среде. Такие организмы называютпойкилоосмотическими.

К ним относятся все низшие растения (в том числе сине-зеленые водоросли- цианобактерии), большинство морских беспозвоночных животных.

Диапазон толерантности к изменениям концентрации солей у этих организмов невелик; они распространены, как правило, в морских экосистемах с относительно постоянной соленостью .

К другой группе водных организмов относятся так называемые гомойоосмотические.

Они способны активно регулировать осмотическое давление и поддерживать его на определенном уровне независимо от изменений концентрации солей в воде, поэтому их называют также осморегуляторами.

К ним относятся высшие раки, моллюски, водные насекомые. Осмотическое давление внутри их клеток не зависит от химической природы растворенных в цитоплазме солей. Оно обусловлено общим количеством растворенных частиц (ионов). У осморегуляторов активная ионная регуляция обеспечивает относительное постоянство внутренней среды, а также способность избирательно извлекать из воды отдельные ионы и накапливать их в клетках своего организма.

Задачи осморегуляции в пресной воде противоположны таковым в морской.

У пресноводных организмов внутриклеточная концентрация солей всегда выше, чем в окружающей среде.

Осмотический ток всегда направлен внутрь клеток, и эти виды являются гомойосмотическими.

Важным механизмом поддержания у них водно-солевого гомеостаза является активный перенос ионов против градиента концентрации.

У некоторых водных животных этот процесс осуществляется поверхностью тела, но главным местом такого активного транспорта служат специальные образования – жабры.

В ряде случаев покровные образования затрудняют проникновение воды через кожу, например, чешуя, панцири, слизь; тогда активное выведение воды из организма происходит с помощью специализированных органов выделения.

Водно-солевой обмен у рыб представляет собой более сложный процесс, который требует отдельного рассмотрения. Здесь отметим лишь, что он происходит по следующей схеме:

Вода поступает в организм осмотическим путем через жабры и слизистую оболочку желудочно-кишечного тракта, избыток ее выводится через почки. Фильтрационно-реабсорбционная функция почек может меняться в зависимости от соотношения осмотических давлений водной среды и жидкостей организма. Благодаря активному переносу ионов и способности к осморегуляции многие пресноводные организмы, в том числе рыбы, приспособились к жизни в солоноватой и даже в морской воде.

Наземные организмы имеют в той или иной мере специализированные структурно-функциональные образования, обеспечивающие водной-солевой обмен. Известны многочисленные варианты приспособлений к солевому составу среды и его изменениям у обитателей суши. Эти приспособления становятся решающими в тех случаях, когда вода является лимитирующим фактором жизни. Например амфибии , обитают во влажных наземных биотопах благодаря особенностям водно-солевого обмена, которые сходны с обменом у пресноводных животных. По-видимому, такой тип приспособления сохранился в ходе эволюции при переходе из водной среды обитания в наземную.

Для растений аридных (засушливых) зон большое значение в ксерофитных условиях имеет повышенное содержание солей в почве.

Солеустойчивость различных видов растений существенно отличается. На засоленных почвах обитают галофиты – растения, которые переносят большие концентрации солей.

Они накапливают в тканях до 10 % солей, что ведет к повышению осмотического давления и способствует более эффективному насасыванию влаги из засоленных почв.

Некоторые растения выводят избыток солей через специальные образования на поверхности листа, другие обладают способностью связывать соли с органическими веществами.

Реакция среды рН

Распространение и численность организмов существенно зависит от реакции почвы или водной среды.

Загрязнение атмосферного воздуха вследствие сжигания ископаемого топлива (чаще всего диоксидом серы) приводит к отложению сухих ацидогенных частиц и выпадению дождя, состоящего, по сути, из слабой сернистой кислоты. Выпадение таких «кислых дождей» вызывает закисле-ние различных объектов окружающей среды. Сейчас проблема «кислых дождей» стала приобретать глобальный характер.

Влияние закисления сводится к следующему :

    Снижение рН ниже 3, также как повышение выше 9, приводит к повреждению протоплазмыкорней большинства сосудистых растений.

    Изменение рН в почве вызывает ухудшение условий питания: снижается доступность биогенных элементов для растений.

    Снижение рН до 4,0 – 4,5 в почве или донных осадках в водных экосистемах вызывает разложение глинистых пород (алюмосиликатов), вследствие чего среда становится токсичной из-за поступления в воду ионов алюминия (Al).

    Железо и марганец, необходимые для нормального роста и развития растений, при низких рН становятся токсичными вследствие перехода в ионную форму.

Пределы устойчивости к закислению почвы у разных растений различны, но только немногие растения могут расти и размножаться при рН ниже 4,5.

    При высоких значениях рН, т. е. при подщелачивании, также создаются неблагоприятные условия для жизнедеятельности растений. В щелочных почвах железо, марганец, фосфаты присутствуют в виде малорастворимых соединений и плохо доступны для растений.

    Резко отрицательное воздействие оказывает на биоту закисление водных экосистем.Повышенная кислотность действует негативно в трех направлениях:

    нарушения осморегуляции, активности ферментов (они имеют оптимумы рН), газообмена;

    токсического воздействия ионов металлов;

    нарушений в пищевых цепях, изменения пищевого рациона и доступности пищи.

В пресноводных экосистемах определяющую роль в реакции среды играет кальций, который наряду с диоксидом углерода определяет состояние карбонатной системы водных объектов.

Присутствие ионов кальция имеет значение и для поведения остальных компонентов, например железа.

Поступление кальция в воду связано с неорганическим углеродом карбонатных пород, из которых происходит его выщелачивание.

Газовый состав среды обитания

Для многих видов организмов, как бактерий, так и высших животных и растений, концентрация кислорода и двуокиси углерода, которые составляют в атмосферном воздухе 21 % и 0,03 % по объему соответственно, являются лимитирующими факторами.

    При этом в наземных экосистемах состав внутренней воздушной среды – атмосферного воздуха – относительно постоянен.

    В водных экосистемахколичество и состав газов, растворенных в воде, сильно варьирует.

КИСЛОРОД

В водных объектах – озерах и водохранилищах, богатых органическим веществом – кислород становится фактором, лимитирующим процессы окисления, и тем самым приобретает первостепенную важность.

В воде содержится значительно меньше кислорода, чем в атмосферном воздухе, а вариации его содержания там связаны со значительными колебаниями температуры и растворенных солей.

    Растворимость кислорода в воде повышается с понижением температуры и снижается с повышением солености.

Общее количество кислорода в воде обеспечивается поступлением из двух источников:

    из атмосферного воздуха (путем диффузии)

    из растений (как продукт фотосинтеза).

    Физический процесс диффузии из воздуха протекает медленно и зависит от ветра и движения воды.

    Поступление кислорода при фотосинтезе определяется интенсивностью процесса диффузии, который зависит, прежде всего, от освещенности и температуры воды.

    Вследствие этих причин количество кислорода, растворенного в воде, сильно изменяется в течение суток, в разные сезоны, а также отличается в различных физико-географических и климатических условиях.

УГЛЕКИСЛЫЙ ГАЗ

Диоксид углерода в водных экосистемах не имеет такого большого значения, как кислород.

Растворимость его в воде высокая.

Он образуется в результате дыхания живых организмов, разложения отмерших остатков животных и растений.

Углекислота, образующаяся в воде, вступает в реакцию с известняками, образуя карбонаты и бикарбонаты.

Карбонатная система океанов служит основным резервуаром углекислого газа в биосфере и буфером, поддерживающим концентрацию водородных ионов на уровне, близком к нейтральному.

В целом для всех живых существ кислород и углекислый газ, несомненно, являются лимитирующими факторами существования. Диапазоны величин этих факторов, сложившиеся в ходе эволюции, довольно узки.

Концентрации кислорода, необходимые для дыхания, достаточно постоянны и закрепились в ходе эволюции.

Гомеостаз обеспечивается постоянством параметров внутренней среды организмов; содержание кислорода и углекислого газа в различных тканях и органах поддерживается на относительно постоянном уровне.

Карбонатная система жидкостей организма служит хорошим буфером, обеспечивающим гомеостаз.

течение, ветер

Водные течения :

Глобальные (морские) и локальные.

Глобальные:

    Учавствуют в распространении организмов.

    Определяют климатические условия многих регионов планеты (гольфстрим)

Локальные:

    Влияют на газовый состав среды (воды) (увеличивается концентрация кислорода).

    Увеличение течения в водоемах создает увеличение продуктивности сообщества. Стоячая вода создает стрессовые условия, а проточная создает дополнительный источник энергии, повышающий продуктивность.

    Способствуют возникновению комплекса морфологических адаптаций, противостоящих течению (?).

Воздушные течения (ветра):

    Ветер является лимитирующим фактором, ограничивающим распространение многих животных (насекомые).

    Играет важную роль в миграции насекомых. Восходящие токи воздуха подхватывают мелких насекомых на 1-2 км, а затем ветер переносит их на огромные расстояния.

    Чем сильнее ветер, тем больше направление миграции совпадает с направлением ветра (бражники, тля и цветочные мухи на Шпицбергене).

    Ветер влияет на распределение насекомых по биотопу (поляны, опушки, за кустами, за деревьями ветер слабее).

    Определяет возможность полета и активности большинства летающих животных (насекомые, птицы). Активность нападения кровососущих двукрылых.

    Влияет на распространение веществ используемых животными в качестве стимуляторов полового поведения (особенно феромоны у насекомых). Запах самки и т.д.

    Лимитирует рост растений (в условиях тундры или альпийских лугов растения карликовые). Но влияет и температура.

    Определяет особенности миграционного и трофического поведения птиц (парящий полет, миграции мелких птиц).

Сила тяжести

    Гравитация влияет на формообразование и физиологию крупных животных (биомеханика). Один из определяющих факторов существования жизни на земле.

    Сила тяжести может служить сигнальным фактором у насекомых, в качестве указателя к направлению в открытое пространство. (отрицательный геотропизм ). Стремление вверх по стеблю (против градиента силы тяжести – это стремление к свету, теплу, свободе (особенно для летающих). Эксперименты с голодной саранчой в садках где еда на дне (опустились за едой только через несколько часов).

    Положительный геотропизм наблюдается у почвенных животных (Опыты Гилярова с насекомыми в сухой и влажной почвой в садках. Хоть почва и сухая все равно ползли вниз, а там погибали).

    Геотропизм может меняться по сезонам в зависимости от условий обитания и зимовки (подкорковые клопы то вниз, то вверх).

ЭЛЕКТОРМАГНИТНЫЕ ПОЛЯ ЗЕМЛИ

1. Многие жужелицы используют магнитное поле землидля ориентации и перемещения в ночное время.

2. Многие ориентируются и передвигаются под углом или параллельно геомагнитным линиям, используя их в ориентации (пчелы, мучные хрущаки, майские жуки.

3. В обычных условиях зрительные и другие ориентиры, а при их отсутствиях включаются магнитные механизмы ориентации.

5. Концепция лимитирующих факторов. "Закон Ю. Либиха". Закон толерантности. Зависимость общего обмена и его интенсивности от массы тела. Правило Аллена, Бергмана, Глогера. Классификация ресурсов. Экологическая ниша. Свойства ниши.

В Мировом океане, к примеру, развитие жизни лимитируется главным образом недостатком азота и фосфора. Поэтому любой подъем на поверхность донных вод, обогащенных этими минеральными элементами, оказывает благотворное влияние на развитие жизни. Особенно ярко это проявляется в тропических и субтропических районах.

закон минимума Ю. Либиха

Живой организм в природных условиях одновременно подвергается воздействия не одного, а многих экологических факторов. Причем любой фактор требуется организму в определенных колическах/дозах. Либих установил, что развитие растения или его состояние зависит не от тех химических эл-в, которые присутствуют в почве в достаточных кол-вах, а от тех, которых не хватает. Если

любого, хотя бы одного из элементов питания в почве меньше, чем требуется данным растениям, то оно будет развиваться ненормально, замедленно, или иметь патологические отклонения.

закон минимума Ю.ЛИБИХА - концепция, согласно которой существование и выносливость организма определяется самым слабым звеном в цепи его экологических потребностей.

Согласно закону минимума жизненные возможности организмов лимитируют те экологические факторы, количество и качество которых близки к необходимому организму или экосистеме минимуму.

Закон толерантности Шелфорда - закон, согласно которому существование вида определяется лимитирующими факторами, находящимися не только в минимуме, но и в максимуме.

Закон толерантности расширяет закон минимума Либиха.

Формулировка

«Лимитирующим фактором процветания организма может быть как минимум, так и максимум экологического влияния, диапазон между которыми определяет степень выносливости (толерантности) организма к данному фактору».

Любой фактор, находящийся в избытке или недостатке, ограничивает рост и развитие организмов и популяций.

Закон толернатности был дополнен в 1975г Ю.Одумом.

Организмы могут иметь широкий диапазон толерантности в отношении одного фактора и узкий диапазон в отношении другого.

Организмы с широким диапазоном толерантности в отношении всех экологических факторов обычно наиболее распространены

Если условия по одному экологическому фактору не оптимальны для вида, то диапазон толерантности может сузиться и в отношении других экологических факторов (например, если содержание азота в почве мало, то требуется больше воды для злаков)

Диапазоны толерантности к отдельным факторам и их комбинациям различны.

Период размножения является критическим для всех организмов, поэтому именно в этот период увеличивается число лимитирующих факторов.

Зависимость общего обмена и его интенсивности от массы тела

Правило Аллена - в экологии - закон, согласно которому выступающие части тела теплокровных животных в холодном климате короче, чем в теплом, поэтому они отдают в окружающую среду меньше тепла. Отчасти правило Аллена справедливо и для побегов высших растений.

Правило Бергмана - в экологии - закон, согласно которому у теплокровных животных, подверженных географической изменчивости, размеры тела особей статистически больше у популяций, живущих в более холодных частях ареала вида.

Правило Глогера - в экологии - закон, согласно которому географические расы животных в теплых и влажных регионах пигментированы сильнее, чем в холодных и сухих регионах. Правило Глогера имеет большое значение в систематике животных.

Ресурсы –количественно выраженные составляющие его жизнедеятельности. Все то что организм потребляет. Ресурсы могут быть органической и неорганической природы (живые и не живые). Доступные и недоступные. Нора, дупло, самка –это все тоже ресурсы. При этом наличный запас всего того что используется организмом и что его окружает постоянно меняется в количественном и качественном отношении. Все это и будет ресурсом.

Ресурсы – вещества из которых состоят тела, энергия, используемая в процессах, места где протекают их стадии жизни. Есть ресурсы пищевые, есть энергетические, пространственные.

Классификация ресурсов (по Тилману -Tilman, 1982):

1.Незаменимые ресурсы

Ни один не в состоянии заменить другой. Скорость роста, которой можно достигнуть при снабжении ресурсом 1 жестко ограничена количеством ресурса 2. Олигофаги.

(-1, +1, 0 – скорость роста биомассы)

2.Взаимозаменяемые ресурсы. Любой из них можно полностью заменить другим. Полифаги. При любой скорости роста количество любого ресурса всегда необходимо. При снижении одного необходимо большее другого и наоборот.

3.Взаимодополняющие (комплементарные) При совместном потреблении организмом данных ресурсов их требуется мньше, чем при раздельном потреблении (для достижения одной и той же скорости роста).

4.Антагонистические. При совместном потреблении скорость роста меньше чем при раздельном потреблении ресурсов. Ядовитые растения в пищу травоядным.

5.Ингибирующие. Это незаменимые ресурсы, но при больших концентрациях являются антагонистами

Солнечный свет — один из наиболее важных для жизни растений экологических показателей. Он поглощается хлорофиллом и используется при построении первичного органического вещества. Почти все комнатные растения светолюбивы, т.е. лучше развиваются при полном освещение, но различаются по теневыносливости. Принимая во внимание отношение растений к свету, их принято подразделять на три основные группы: светолюбивые, теневыносливые, тенеиндифферентные.

Есть растения, довольно легко приспосабливающиеся к достаточному или избыточному свету, но встречаются и такие, которые хорошо развиваются только при строго определенных параметрах освещенности. В результате адаптации растения к пониженной освещенности несколько меняется его облик. Листья становятся темно-зелеными и немного увеличиваются в размерах (линейные листья удлиняются и становятся уже), начинается вытягивание стебля, который при этом теряет свою прочность. Затем рост постепенно уменьшается, т.к резко снижается производство продуктов фотосинтеза, идущих на посторенние тела растения. При недостатке света многие растения перестают цвести. При избытке света хлорофилл частично разрушается, и цвет листьев становится желто-зеленым. На сильном свету рост растений замедляется, они получаются более приземистыми с короткими междоузлиями и широкими короткими листьями. Появление бронзово-желтой окраски листьев указывает на значительный избыток света, который вреден растениям. Если срочно не принять соответствующие меры, может возникнуть ожог .

Эффект ионизирующего излучения проявляется в воздействии радиации на растительный организм на разных уровнях организации живой материи. Прямое действие состоит в радиационно-химической ионизации молекул вместе поглощения энергии излучения, т.е. переводит молекулы в возбужденное состояние. Косвенное воздействие сопровождается повреждениями молекул, мембран, органоидов, клеток в результате воздействия продуктов радиолиза воды, количество которых в результате облучения резко возрастает. Эффективность лучевого поражения существенно зависит от содержания кислорода в среде. Чем ниже концентрация кислорода, тем меньше эффект поражения. На практике принято считать, что предел летальных доз кислорода характеризует радиоустойчивость организмов. В городской среде на жизнь растений влияет также расположение построек. Из этого можно сделать вывод, что свет необходим растениям, но каждое растение светолюбиво по-своему.

3. Исследовательская часть

Развитие растений тесно связано с условиями окружающей среды. Температуры, характерные для данного района, количество осадков, характер почв, биотические параметры и состояние атмосферы — все эти условия взаимодействуют между собой, определяют характер ландшафта и вид растений.

Каждое из загрязнений влияет на растения особым образом, однако все загрязнения оказывают влияние на некоторые основные процессы. В первую очередь воздействию подвергаются системы, регулирующие поступление загрязняющих веществ, а также химические реакции, ответственные за процессы фотосинтеза, дыхания и производство энергии. В ходе проделанной мной работы, я поняла, что растения, которые произрастают рядом с дорогами, существенно отличаются от растений, которые растут в парках. Пыль, которая оседает на растениях, забивает поры, и мешает процессам дыхания, а оксид углерода приводит к пожелтению, или обесцвечиванию растения и карликовости.

Я проводила свое исследование на примере листьев осины. Для того чтобы увидеть, какое количество пыли остается на растении, мне понадобилась липкая лента, которую я приклеила на внешнюю сторону листа. Листок из парка загрязнен мало, а значит, все его процессы нормально функционируют. [см. приложение, фото №1,3]. А листок, который находился в непосредственной близости с дорогой, очень сильно загрязнен. Он меньше своих нормальных размеров на 2 см., у него другой цвет (темнее чем должен быть), и, следовательно, он подвергся воздействию атмосферных загрязнителей и пыли. [см. приложение, фото №2,4].

Еще один показатель загрязнения окружающей среды — отсутствие лишайников на растениях. В ходе своего исследования я выяснила, что лишайники растут на растениях только в экологически чистых местах, например: в лесу. [см. приложение, фото №5]. Трудно представить себе лес без лишайников. Лишайники селятся на стволах, а иногда на ветвях деревьев. Особенно хорошо лишайники произрастают в наших северных хвойных лесах. Это свидетельствует о чистом воздухе в этих районах.

Таким образом, можно сделать вывод, что в парках крупных городов лишайники совсем не растут, стволы деревьев и ветви совершенно чистые, а вне города, в лесу, лишайников довольного много. Дело в том, что лишайники очень чувствительны к загрязненности воздуха. А в промышленных городах он далек от чистоты. Фабрики и заводы выбрасывают в атмосферу много различных вредных газов, именно эти газы и губят лишайники.

Для того чтобы стабилизировать ситуацию с загрязнениями, нам, прежде всего, нужно ограничить выброс отравляющих веществ. Ведь растениям, как и нам, для нормального функционирования, нужен чистый воздух.

Заключение

На основе проведенного мной исследования и использованных источников, я сделала вывод, что окружающая среда растений, имеет экологические проблемы, с которыми надо бороться. И сами растения принимают участие в этой борьбе, они активно очищают воздух. Но существуют и климатические факторы, которые не так пагубно влияют на жизнь растений, а заставляют растения адаптироваться и произрастать в подходящих для них климатических условиях. Я выяснила, что окружающая среда и растения взаимодействуют, и без этого взаимодействия, растения бы погибли, так как все необходимые для своей жизнедеятельности компоненты, растения черпают из своей среды обитания. Растения могут помочь нам справиться с нашими экологическими проблемами. В ходе выполнения данной работы, мне стало более понятно, почему в разных климатических условиях растут разные растения и как они взаимодействуют с окружающей средой, а также как растения приспосабливаются к жизни непосредственно в городской среде.

Словарь

Генотип — генетическая структура отдельного организма, специфический набор генов, который он несет.

Денатурация — характерное для белковых веществ изменение их строения и естественных свойств при изменении физических и химических условий среды: при повышении температуры, изменении кислотности раствора и др. Обратный процесс называется ренатурацией.

Метаболизм — это обмен веществ, химические превращения, протекающие от момента поступления питательных веществ в живой организм до момента, когда конечные продукты этих превращений выделяются во внешнюю среду.

Осморегуляция — это совокупность физико-химических и физиологических процессов, обеспечивающих относительное постоянство осмотического давления (ОД) жидкостей внутренней среды.

Протоплазма — содержимое живой клетки, включая её ядро и цитоплазму; материальный субстрат жизни, живое вещество, из которого состоят организмы.

Тилакоиды — ограниченные мембраной компартменты внутри хлоропластов и цианобактерий. В тилакоидах происходят светозависимые реакции фотосинтеза.

Устьице — щелевидное отверстие (устьичная щель) в эпидермисе надземных органов растений и две ограничивающие его (замыкающие) клетки.

Фитофаги — растительноядные животные, к которым относятся тысячи видов насекомых и других беспозвоночных а также крупных и мелких позвоночных.

Фитонциды — это образуемые растениями биологически активные вещества, убивающие или подавляющие рост и развитие бактерий, микроскопических грибов, простейших.

Фотосинтез — образование органических веществ зелеными растениями и некоторыми бактериями с использованием энергии солнечного света. В ходе фотосинтеза происходит поглощение из атмосферы диоксида углерода и выделение кислорода.

Использованные информационные ресурсы при выполнении учебно-исследовательской работы

1. Ахиярова Г.Р., Веселов Д. С.: " Гормональная регуляция роста и водного обмена при засолении" // Тезисы участников 6-ой Пущинской школы — конференции молодых ученых "Биология — наука XXI века", 2002.

2. Большой энциклопедический словарь. — 2-е изд., перераб. и доп. — М.: Большая Российская энциклопедия, 1998. — 1456 с.: ил. Редакция Прохорова А.М. Гл. редактор Горкин А.П.

3. Вавилов П.П. Растениеводство, — 5-е изд. — М.: Агропромиздат, — 1986 г.

4. Вернадский В.И., Биосфера, т.1-2, Л., 1926 г.

5. Володько И. К.: “Микроэлементы и устойчивость растений к неблагоприятным условиям», Минск, Наука и техника, 1983г.

6. Данилов-Данильян В. И.: "Экология, охрана природы и экологическая безопасность" М.: МНЭПУ, 1997 г.

7. Дробков А. А.: " Микроэлементы и естественные радиоактивные элементы в жизни растений и животных ", М., 1958.

8. Википедия: информационный портал: [Электрон. ресурс] // Среда обитания [сайт] Режим доступа: http://ru. wikipedia.org/wiki/Среда_обитания (10.02.10)

9. Все о Земле: информационный портал: [Электрон. ресурс] // Водная оболочка [сайт] Режим доступа: http://www.vseozemle.ru/2008-05-04-18-31-40.html (23.03.10)

10.Sbio. info Первое био сообщество: информационный портал: [Электрон. ресурс] // Биотические факторы среды и обусловленные ими типы взаимоотношений организмов [сайт] Режим доступа: http://www.sbio. info/page. php? id=159 (02.04.10)

Приложение

Фото № 1. Листок осины из парка.

Фото №2. Листок, находящийся рядом с проезжей частью.

Фото №3. Пыль на липкой ленте с листа из парка.

Фото №4. Пыль на липкой ленте с листа, находящегося рядом с проезжей частью.

Фото №5. Лишайник на стволе дерева в лесопарке.

ДОБАВИТЬ КОММЕНТАРИЙ [можно без регистрации]
перед публикацией все комментарии рассматриваются модератором сайта — спам опубликован не будет

Создание для каждой овощной культуры наиболее благоприятных условий роста больше доступно в теплицах, но и то не всегда. В открытом же грунте такие условия могут или чередоваться по периодам роста (месяцам и неделям), или сочетаться в случайном оптимальном совпадении нескольких условий среды и приемов ухода.

И, тем не менее, несмотря на очевидную неблагоприятность по отдельным годам, растения все же ежегодно дают урожаи, в общем удовлетворяющие хозяев огородов.

Способность культур давать урожаи практически в любых сочетаниях климатических факторов и любых недостатков в уходе заложена в их биологической приспособляемости к условиям выращивания.

В качестве примеров таких приспособлений (адаптационных способностей) можно указать на быстрый рост (скороспелость), очень глубокую или широко разветвленную ближе к поверхности почвы корневую систему, многочисленность плодовых завязей, взаимовыгодное сообщество корней с микроорганизмами и другие.

Кроме указанных, есть немало и других механизмов приспособления растений к складывающимся внешним условиям и противостояния им.

О них и пойдет речь.

Защита от перегрева

Тридцать лет назад молдавские ученые, исследовав 200 видов растений (в т. ч. большинство овощных), пришли к выводу о наличии у них в межклеточных пространствах листьев своеобразных физиологических «холодильников».

До 20-40% влаги в виде пара, образующегося внутри листа, и часть пара, поглощаемого листом из наружного воздуха, конденсируется (оседает) на клетках внутренних тканей и предохраняет их от чрезмерного перегрева при высоких наружных температурах.

С резким повышением температуры воздуха и при снижении влагообеспеченности (недостаточный или задержанный полив) растительные охладители активизируют свою деятельность, благодаря чему в процесс вовлекается углекислый газ, поглощаемый листом, понижается температура листа и уменьшается расход воды на испарение (транспирацию).

При непродолжительном действии жары растение успешно справится с таким неблагоприятным фактором.

Перегрев листа может происходить при поглощении им избытка тепловой солнечной радиации, называемой в спектре солнечных лучей ближней инфракрасной. Регулировать такое поглощение и не допускать его избытка растению помогает достаточное содержание в листьях калия, что достигается своевременными периодическими подкормками этим элементом.

Спящие почки — защита от заморозков

На случай гибели растений от заморозка при сильной корневой системе у них пробуждаются спящие почки, которые в обычных условиях никак бы себя не проявили.

Развивающиеся новые побеги зачастую позволяют получать урожаи не хуже, чем без такого стресса.

Спящие почки помогают растениям выправиться также при отравлении части листовой массы (аммиачном и др.) Для защиты от токсичного действия аммиака растение вырабатывает дополнительное количество органических кислот и сложных азотных соединений, которые и помогают восстановлению жизнедеятельности.

При всяких резких изменениях среды (стрессовых ситуациях) в растениях усиливаются системы и механизмы, позволяющие им более рационально использовать имеющиеся биологические ресурсы.

Они и позволяют продержаться, как говорится, до лучших времен.

Немного радиации идёт на пользу

Растения оказались приспособленными даже к небольшим дозам радиоактивных излучений.

Мало того, они их поглощают с пользой для себя. Излучения усиливают ряд биохимических процессов, что способствует росту и развитию растений. И важную роль в этом играет, между прочим, аскорбиновая кислота (витамин С).

Растения адаптируются к ритмам окружающей среды

Смена светлого времени темнотой, чередование в течение дня интенсивности света и его спектральных характеристик (из-за облачности, запыленности воздуха, высоты солнца) вынудили растения приспособить к этим условиям свою физиологическую деятельность.

Они меняют активность фотосинтеза, образование белков и углеводов, создают определенную суточную и дневную ритмичность внутренних процессов.

Растения «привыкли» к тому, что с уменьшением света снижается температура, к чередованию величины температуры воздуха днем и ночью при сохранении более стабильной температуры почвы к различным ритмам поглощения и испарения воды.

При временном недостатке в растении ряда элементов питания действует механизм перераспределения их от старых листьев к молодым, растущим и верхушкам побегов.

То же происходит и при естественном отмирании листьев. Таким образом, происходит экономия пищевых средств с их вторичным использованием.

Растения приспособились давать урожаи в теплицах

В теплицах, где условия освещенности часто бывают хуже, чем в открытом грунте (из-за затенения покрытием, отсутствия отдельных частей спектра), фотосинтез в целом протекает менее интенсивно, чем в открытом грунте.

Но тепличные растения приспособились его компенсировать за счет более развитой листовой поверхности и большого содержания в листьях хлорофилла.

В нормальных условиях роста для увеличения растительной массы и формирования урожая у культур все происходит согласованно и приспособлено к тому, чтобы получение веществ от фотосинтеза было больше, чем их расход на дыхание.

Растения тоже хотят жить

Все приспособительные системы и реакции растений к тем или иным условиям существования служат одной цели — сохранению постоянного внутреннего состояния (биологической саморегуляции), без чего не может обходиться ни один живой организм.

А доказательством наилучшей приспособленности любой культуры служит получение от нее урожая на приемлемом уровне в наиболее неблагоприятный год.

Э. Феофилов, заслуженный агроном России

Другие статьи раздела «Интересные факты»:

  1. Как приспосабливаются растения к неблагоприятным условиям
  2. Растения предсказатели погоды и бедствий
  3. Цветы из холодного фарфора.

    Неувядающее чудо

  4. 8 растительных афродизиаков для улучшения сексуальной жизни
  5. Магические свойства растений
  6. Необычное применение банановой кожуры
  7. Интересные факты о цветах 2
  8. Орхидея — призрак. Интересные факты
  9. Про кактусы. Вам не придётся листать энциклопедию
  10. Растения, которые помогают справиться со стрессом

Ещё: 010203

Изучение методов и способов приспособлений различных растений к воздействию окружающей среды, которые позволяют им, более широко расселятся и выживать в различных условиях окружающей среды.

Генетическое наследование организмов к возможности адаптации.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.

Адаптация человека к условиям окружающей среды.

Научные основы гигиенического нормирования факторов окружающей среды

Характеристика процессов адаптации человека к условиям окружающей среды.

Исследование основных механизмов адаптации. Изучение общих мер повышения устойчивости организма. Законы и закономерности гигиены. Описания принципов гигиенического нормирования.

презентация , добавлен 11.03.2014

Приспособление организмов к окружающей среде

Виды адаптации живых организмов к окружающей среде.

Маскировочная, покровительственная и предупреждающая окраска. Особенности поведения и строения тела животных для приспособления к образу жизни. Мимикрия и забота о потомстве. Физиологические адаптации.

презентация , добавлен 20.12.2010

Индикаторная роль растений и животных

Растения-индикаторы — растения, для которых характерна резко выраженная адаптация к определённым условиям окружающей среды.

Приспособление растений к окружающей среде

Реакции живых организмов на будущие изменения погодных условий. Примеры использования индикационных свойств растений и животных.

презентация , добавлен 30.11.2011

Основные факторы водной среды и их влияние на организмы

Общая характеристика водной среды. Анализ адаптации организмов к различным факторам — плотности воды, солевому, температурному, световому и газовому режимам.

Особенности адаптации растений и животных к водной среде, экологические группы гидробионтов.

курсовая работа , добавлен 29.12.2012

Изучение приспособленности организмов к среде обитания

Среда обитания растений и животных. Плоды и семена растений, их приспособленность к размножению.

Приспособление к передвижению разных существ. Приспособленность растений к разным способам опыления. Выживаемость организмов в неблагоприятных условиях.

лабораторная работа , добавлен 13.11.2011

Приспособление к низким температурам у животных

Многообразие способов приспособляемости живых организмов к воздействию неблагоприятных условий среды обитания на земле. Адаптация животных к низким температурам.

Использование специфических свойств организма к жизни в сложных климатических условиях.

презентация , добавлен 13.11.2014

Микроорганизмы как индикаторы загрязнения окружающей среды

Приоритетные загрязнители окружающей среды и их влияние на почвенную биоту. Влияние пестицидов на микроорганизмы. Биоиндикация: понятие, методы и особенности. Определение влажности почвы. Учет микроорганизмов на различных средах.

Среда Эшби и Гетчинсона.

курсовая работа , добавлен 12.11.2014

Проблемы использования генетически модифицированных организмов

Хранение и передача генетической информации у живых организмов. Способы изменения генома, генная инженерия. Риски для здоровья человека и окружающей среды, связанные с генетически модифицированными организмами (ГМО), возможные неблагоприятные эффекты.

курсовая работа , добавлен 27.04.2011

Морфометрия листовой пластинки как показатель загрязнения окружающей среды (на примере г.

Виды деревьев, используемых в озеленении, интродуцированные растения. Особенности древесных растений. Особенности использования растений в качестве биоиндикаторов. Биологические индексы и коэффициенты, используемые при индикационных исследованиях.

курсовая работа , добавлен 19.09.2013

Адаптация организмов к водному фактору

Адаптация растений к поддержанию водного баланса.

Тип ветвления различных корневых систем. Экологические группы растений по отношению к воде: (гидато-, гидро-, гигро-, мезо-, ксеро-, склерофиты и суккуленты). Регуляция водного обмена у наземных животных.

реферат , добавлен 26.12.2013

Приспособляемость растений к окружающей среде

Чем жестче и тяжелее условия обитания, тем гениальнее и разнообразнее приспособляемость растений к превратностям окружающей среды. Нередко приспособление заходит столь далеко, что внешняя среда начинает полностью определять форму растения. И тогда растения, относящиеся к различным семействам, но обитающие в одних и тех же суровых условиях, часто становятся внешне столь похожими друг на друга, что это может ввести в заблуждение в отношении истинности их родственных связей — hotcooltop.com.

Например, в пустынных областях для многих видов, и, прежде всего, для кактусов, наиболее рациональной оказалась форма шара. Однако не все то, что имеет шарообразную форму и утыкано шипами-колючками, - кактусы. Столь целесообразная конструкция, позволяющая выжить в тяжелейших условиях пустынь и полупустынь, возникла и в других систематических группах растений, не принадлежащих к семейству кактусовых.

И наоборот, кактусы не всегда приобретают форму шара или колонны, усеянных колючками. Один из самых известных в мире кактусоведов Курт Баккеберг в своей книге «Чудесный мир кактусов» рассказывает о том, как могут выглядеть эти растения, помещенные в те или иные условия обитания. Вот что он пишет:

«Ночь на Кубе полна таинственных шорохов и звуков. Крупные летучие мыши, словно тени, бесшумно проносятся мимо нас в полной темноте, лишь светится пространство вокруг старых, умирающих деревьев, в котором мириады светлячков исполняют свой огненный танец.

Непроглядная тропическая ночь с ее давящей духотой плотно окутала землю. Длительный путь, проделанный нами верхом, отнял у нас последние силы, и теперь мы, забравшись под москитные сетки, пытаемся хотя бы немножко отдохнуть. Конечная цель нашей экспедиции - край изумительно красивых зеленых кактусов группы рипсалиевых. Но вот наступил час седлать лошадей. И хотя эту несложную операцию мы проделываем ранним утром, пот буквально заливает нам глаза.

Вскоре наш небольшой караван вновь отправляется в путь. После нескольких часов дороги зеленоватый мрак девственного леса начинает постепенно рассеиваться.

Нашим глазам до самого горизонта открывается полная солнца местность, сплошь покрытая кустарником. Лишь кое-где над ним возвышаются вершины низкорослых деревьев, да иногда можно видеть одиночные мощные стволы, увенчанные громадными кронами.

Однако до чего странно выглядят ветви деревьев!

На них как бы двойная вуаль: покачиваясь от дуновений теплого приземного ветерка, с веток почти до земли свисают длинные нити-стебли одного из видов бромелиевых (Tillandsia usneoides), чем-то похожие на длинные, усыпанные серебром седины сказочные бороды.

Между ними висит масса тонких, сплетающихся в клубки растений-веревок: это - место обитания колоний безлистных эпифитов, кактусов, родственных рипсалиевым. Точно спасаясь бегством от буйной наземной растительности, они стремятся забраться повыше в кроны деревьев, поближе к солнечному свету. Какое многообразие форм! Здесь тонкие нитевидные стебли либо громоздкие покрытые нежным пушком мясистые выросты, там - сильно разросшиеся побеги, напоминающие по виду ребристые цепочки.

Сложное переплетение вьющихся растений самых причудливых форм: спиральных, зазубренных, витых, волнистых - кажется причудливым произведением искусства. В период цветения вся эта зеленая масса увешана изящными венками или изукрашена разноцветьем мельчайших крапинок. Позже растения надевают на себя пестрые ожерелья из ярко-белых, вишневых, золотисто-желтых и темно-голубых ягод».

Кактусы, которые приспособились жить в кронах лесных великанов и стебли которых, подобно лианам, свисают до самой земли, широко распространены в тропических лесах Центральной и Южной Америки.

Некоторые из них обитают даже на Мадагаскаре и Цейлоне.

Лазящие кактусы - это ли не поразительный пример способности растений приспосабливаться к новым условиям жизни? Но он не единственный из многих сотен других. Обычными обитателями тропических джунглей являются вьющиеся и лазящие растения, а также растения-эпифиты, поселяющиеся в кронах древесных растений.

Все они стремятся как можно скорее выбраться из вечных сумерек густого подлеска девственных тропических лесов. Они находят путь наверх, к свету, не создавая при этом мощных стволов и опорных систем, требующих огромных затрат строительного материала. Они спокойно карабкаются вверх, пользуясь «услугами» других растений, выступающих в роли опор — hotcooltop.com.

Для того чтобы успешно справиться с этой новой задачей, растения изобрели разнообразные и довольно совершенные в техническом отношении органы: цепляющиеся корни и черешки листьев с выростами на них, шипы на ветвях, цепляющиеся оси соцветия и т.д.

В распоряжении растений имеются петли-арканы; специальные диски, с помощью которых одно растение своей нижней частью прикрепляется к другому; подвижные усиковидные крючочки, вначале впивающиеся в ствол растения-хозяина, а затем разбухающие в нем; разного рода сдавливающие приспособления и, наконец, весьма изощренный аппарат захватывания.

Мы уже приводили описание структуры листьев банана, данное Г.

Хаберландтом. Не менее красочно описывает он и ротанг - одну из разновидностей лазящих пальм:

«Если сойти с пешеходной дорожки Ботанического сада в Богоре (остров Ява) и несколько углубиться в заросли, то уже через несколько шагов можно остаться без головного убора. Десятки разбросанных повсюду крючочков будут цепляться за наши одежды и многочисленные царапины на лице и руках станут призывать к большей осторожности и вниманию. Оглядевшись вокруг и присмотревшись к аппарату «хватания» растений, в зоне действия которого мы оказались, мы обнаружили, что черешки грациозных и весьма сложных листьев ротанга имеют длинные, до одного-двух метров, исключительно гибкие и эластичные отростки, усеянные многочисленными твердыми и к тому же полуподвижными шипами, каждый из которых представляет собой согнутый и наклоненный назад крючок-зацепку.

Любой лист пальмы снабжен таким наводящим страх крючкообразным шипом, не так-то просто расстающимся с тем, что зацепилось за него. Предел упругости «крюка», состоящего почти целиком из прочных лубяных волокон, чрезвычайно высок.

ПРИСПОСОБЛЯЕМОСТЬ РАСТЕНИЙ К ОКРУЖАЮЩЕЙ СРЕДЕ

«На него можно подвесить целого быка»,- шутя заметил мой спутник, обратив внимание на мои попытки хотя бы приблизительно определить вес, который в состоянии выдержать подобная «леска». У многих родственных ротангу пальм в такие орудия захвата превратились удлиненные оси соцветий.

Ветер легко бросает гибкие соцветия из стороны в сторону до тех пор, пока на их пути не окажется ствол дерева-опоры. Многочисленные крючки-зацепки позволяют им быстро и надежно зацепиться за кору дерева.

Прочно закрепившись с помощью разросшихся листьев на нескольких стоящих рядом друг с другом деревьях (нередко дополнительными средствами удержания служат шипы в нижней части черешка листа или даже в листовом влагалище), совершенно гладкий, змееподобный ствол ротанга, подобно вьюну, взбирается вверх, продираясь сквозь многочисленные ветви, порой перекидываясь на кроны соседних деревьев, с тем чтобы, в конце концов, пробиться молодыми листьями к свету и подняться над кроной дерева-опоры.

Дальше ему дороги нет: напрасно его побеги будут искать опору в воздухе. Стареющие листья постепенно отмирают, и пальма избавляется от них. Лишенные «якорей-крючков», побеги пальмы под тяжестью собственного веса скользят вниз до тех пор, пока самые верхние листья своими шипами вновь не зацепятся за какую-либо подпорку.

У подножия деревьев нередко можно видеть многочисленные побеги пальмы, свитые в петли, совершенно голые, без листьев, часто толщиной с руку взрослого человека. Создается впечатление, что побеги, словно змеи, расползаются по сторонам в поисках новой опоры. В Ботаническом саду Богора наибольшая длина ствола ротанга достигает 67 метров. В труднопроходимых дебрях влажных тропических лесов встречаются ротанги длиной 180 метров, а иногда даже и до 300 метров!»