Все о тюнинге авто

Катодная защита от коррозии. Принцип действия, основные понятия. Техническое обслуживание и ремонт средств электрохимической защиты подземных стальных газопроводов от коррозии Экологическая безопасность при эксплуатации станций катодной защиты

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА ИМ. И.М.ГУБКИНА

УЧЕБНО-ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР ОБРАЗОВАНИЯ РАБОТНИКОВ ТОПЛИВНО-ЭНЕРГЕТИЧЕСКОГО КОМПЛЕКСА (УИЦ)

МУНЦ «АНТИКОР»

Итоговая работа

по программе краткосрочного повышения квалификации:

«ЗАЩИТА ОТ КОРРОЗИИ ГАЗОНЕФТЕПРОМЫСЛОВОГО ОБОРУДОВАНИЯ, ТРУБОПРОВОДОВ И РЕЗЕРВУАРОВ ГАЗОВОГО И НЕФТЯНОГО ХОЗЯЙСТВА»

Тема: Системы электрохимической защиты, их эксплуатация

Москва, 2012г.

Введение

электрохимический коррозия защита заземление

Электрохимическая защита подземных сооружений - метод защиты от электрохимической коррозии, сущность которого заключается в замедлении коррозии сооружения под действием катодной поляризации при смещении потенциала в отрицательную область под действием постоянного тока, проходящего через границу раздела «сооружение - окружающая среда». Электрохимическая защита подземных сооружений может осуществляться с помощью установок катодной защиты (далее УКЗ), дренажных установок или протекторных установок.

При защите с помощью УКЗ, металлическое сооружение (газопровод, оболочка кабеля, резервуар, обсадная колонна скважины и т.д.) подключается к отрицательному полюсу источника постоянного тока. При этом к положительному полюсу источника подключают анодное заземление, обеспечивающее ввод тока в грунт.

При протекторной защите защищаемое сооружение электрически соединяется с металлом, находящимся в той же среде, но имеющим более отрицательный потенциал, чем потенциал сооружения.

При дренажной защите защищаемое сооружение, находящееся в зоне действия блуждающих постоянных токов, подключается к источнику блуждающих токов; это предотвращает стекание этих токов с сооружения в грунт. Блуждающими токами называются токи утечки с рельсовых путей электрифицированных на постоянном токе железных дорог, трамвайных путей и других источников.

1. Установки катодной защиты

Для защиты подземных трубопроводов от коррозии сооружаются установки катодной защиты (УКЗ). В состав УКЗ входят источники электроснабжения сети переменного тока 0,4; 6 или 10 кВ, катодные станции (преобразователи), анодное заземление, контрольно-измерительные пункты (КИП), соединительные провода и кабели. При необходимости в состав УКЗ включаются регулирующие резисторы, шунты, поляризованные элементы, контрольно-диагностические пункты (КДП), с датчиками коррозионного мониторинга, блоки дистанционного контроля и регулирования параметров защиты.

Защищаемая конструкция присоединяется к отрицательному полюсу источника тока, к его положительному полюсу подключают второй электрод - анодный заземлитель. Место контакта с конструкцией называется точкой дренажа. Принципиальную схему метода можно представить следующим образом:

1 - источник постоянного тока

Защищаемое сооружение

Точка дренажа

Анодное заземление

2. Воздушные линии установок катодной защиты

Эксплуатация ВЛ заключается в проведении технического и оперативного обслуживания, восстановительного и капитального ремонтов.

Техническое обслуживание ВЛ состоит из комплекса мероприятий, направленных на предохранение элементов BЛ от преждевременного износа.

Капитальный ремонт ВЛ заключается в проведении комплекса мероприятий по поддержанию и восстановлению первоначальных эксплуатационных показателей и параметров ВЛ. При капитальном ремонте дефектные детали и элементы заменяются либо на равноценные, либо на более прочные, улучшающие эксплуатационные характеристики ВЛ.

Осмотры по всей трассе ВЛ производятся в целях визуальной проверки состояния ВЛ. При осмотрах определяют состояние опор, провода, траверс, изоляторов разрядников, разъединителей, приставок, бандажей, хомутов, нумерации, плакатов, состояние трасс.



Внеочередные осмотры связаны, как правило, с нарушением нормального режима работы или автоматического отключения ВЛ от релейной защиты, а после успешного повторного включения проводят при необходимости. Осмотры носят целенаправленный характер, производят его с применением специальных технических средств передвижения и поиска мест повреждения. Также выявляют неисправности угрожающие повреждению ВЛ или безопасности людей.

Комплекс работ по техническому обслуживанию ВЛ 96 В - 10 кВ.

Наименование работы

Периодичность

Вырубка отдельных деревьев, угрожающих падением на ВЛ и кустарников охранной зоне ВЛ, обрезка веток деревьев

По мере необходимости

Восстановление знаков и плакатов на отдельных опорах

По мере необходимости

Выправка опор

По мере необходимости

Перетяжка проводов

По мере необходимости

Перетяжка проволочных бандажей

По мере необходимости

Удаление набросов на проводах

По мере необходимости

Замена оборванных заземляющих спусков

По мере необходимости

Обновление диспетчерских наименований

По мере необходимости

Подтрамбовка грунта у основании опор

По мере необходимости

Заделка трещин, выбоин, сколов ж/б опор и приставок

По мере необходимости

Ремонт и замена оттяжек

По мере необходимости

Замена вводов

По мере необходимости

Замена изоляторов

По мере необходимости


3. Трансформаторные подстанции выше 1 кВ

КТП относится к электроустановкам напряжением выше 1000 В.

Подстанции трансформаторные комплектные используемые в УКЗ мощностью 25-40 кВА предназначены для приема, преобразования и распределения электрической энергии трехфазного переменного тока частотой 50 Гц.


Однотрансформаторная КТП состоит из вводного устройства на стороне высокого напряжения (УВН), силового трансформатора, распределительного устройства на стороне низкого напряжения (РУНН).

При эксплуатации КТП должна обеспечиваться надежная работа. Нагрузки, уровень напряжения, температура, характеристики масла трансформатора и параметры изоляции должны находиться в пределах установленных норм; устройства охлаждения, регулирования напряжения, защиты, маслохозяйство и другие элементы должны содержаться в исправном состоянии.

Единоличный осмотр КТП, может выполнять работник, имеющий группу не ниже III, из числа оперативного персонала, обслуживающего данную электроустановку в рабочее время или находящегося на дежурстве, либо работник из числа административно-технического персонала, имеющий группу V и право единоличного осмотра на основании письменного распоряжения руководителя организации.

4. Станции катодной защиты

Станции катодной защиты подразделяются на станции с преобразователями тиристорного и инвенторного типа. К тиристорным станциям относятся станции типа ПАСК, ОПС, УКЗВ-Р. К станциям инвенторного типа относятся станции типа ОПЕ, Парсек, НГК-ИПКЗ Евро.

Станции катодной защиты тиристорного типа.

высокая надежность;

простота конструкции, позволяющая организовать ремонт станции на местах силами специалистов службы ЭХЗ.

К недостаткам тиристорных станций относится:

низкий КПД даже на номинальной мощности,

Выходной ток имеет недопустимо большие пульсации;

Большой вес станций;

Отсутствие корректоров мощности;

большое количество меди в силовом трансформаторе.

5. Станции катодной защиты инверторного типа


К достоинствам данного типа станций можно отнести:

высокий КПД;

низкий уровень пульсаций выходного тока;

малый вес (типичный вес станции с мощностью в 1 квт ~ 8…12 кг);

компактность;

малое количество меди в станции;

высокий коэффициент мощности (при наличии корректора, что является обязательным требованием ГОСТа);

легкость оперативной замены станции (преобразователя мощности) даже одним человеком, особенно при модульном исполнении станции.

К недостаткам относится:

отсутствие возможности ремонта в мастерских служб ЭХЗ;

более низкая, по сравнению с тиристорными, надежность станции, определяемая существенно большей сложностью, большим количеством компонентов и чувствительностью ряда из них к скачкам напряжения во время грозы и при автономной системе электроснабжения. В последнее время ряд производителей поставляют СКЗ с установленными блоками грозозащиты и стабилизаторами напряжения, что существенно увеличивает их надёжность.

Техническое обслуживание преобразователя производиться с учетом требований технического описания и согласно графика ППР.


Регламентные работы представляют собой систему планово-предупредительных ремонтов, осмотров и проверок правильности эксплуатации средств ЭХЗ. Эти работы включают в себя выявления и устранение неисправностей и дефектов, проверку контрольно -измерительных приборов, накопление и анализ полученных материалов, характеризующих износ, а также выполнение периодических ремонтов. Сущность системы планово-предупредительных ремонтов заключается в том, что после отработки средствами ЭХЗ заданного количества часов проводится определенный вид планового ремонта: текущий, или капитальный.

6. Текущий осмотр (ТО)

Комплекс работ по уходу и контролю технического состояния всех доступных для внешнего наблюдения конструктивных элементов средств ЭХЗ, осуществляемый в профилактических целях.

При текущем осмотре СКЗ выполняются следующие работы:

проверка показаний встроенных электроизмерительных приборов контрольными приборами;

установка стрелок приборов на нуль шкалы;

снятие показаний вольтметров, амперметров, счетчика расхода электроэнергии и времени наработки преобразователей;

измерение и, при необходимости, регулировка потенциала сооружения в точке дренажа СКЗ;

Запись о проведенных работах в полевом журнале установки.

Текущий осмотр выполняется объездным методом на протяжении всего периода работы сооружений ЭХЗ между плановыми ремонтами.

7. Текущий ремонт (ТР)

Текущий ремонт - осуществляется с минимальными по объему ремонтными работами. Цель текущего ремонта - обеспечить нормальную эксплуатацию объектов ЭХЗ до очередного планового ремонта путем устранения дефектов и посредством регулирования.

Во время текущего ремонта УКЗ производятся все работы, предусмотренные техническим:

Чистка разъемных контактов и монтаж соединений;

удаление пыли, песка, грязи и влаги с элементов конструкции монтажных плат, охладителей силовых диодов, тиристоров, транзисторов;

перетяжка винтовых контактных соединений;

измерение или расчет сопротивления цепи постоянного тока УКЗ;

запись о проведенных работах в полевом журнале установки.

8. Капитальный ремонт (КР)

Наибольший по объему работ вид планово-предупредительного ремонта, при котором производится замена или восстановление отдельных узлов и деталей, разборка и сборка, регулировка, испытание и наладка оборудования системы ЭХЗ. Испытания должны показать, что технические параметры оборудования соответствуют требованиям, предусмотренным нормативно-технической документацией (НТД).

В объем КР станции катодной защиты входят:

все работы среднего ремонта;

замена вышедших из строя опор, подкосов, приставок;

перетяжка, а при необходимости замена проводов, изоляторов, траверс, крючьев;

замена дефектных блоков, коммутационной аппаратуры;

частичная или полная замена (при необходимости) анодного и защитного заземления;

осмотр контакта катодного кабеля с защищаемым сооружением.

9. Внеплановый ремонт

Внеплановый ремонт - это ремонт, не предусмотренный системой ППР, вызванный внезапным отказом, связанным с нарушением правил технической эксплуатации. Четкая организация службы ЭХЗ должна обеспечить проведение таких ремонтов в кратчайший срок. В процессе эксплуатации УКЗ должны приниматься меры, сводящие к минимуму возможность возникновения потребности во внеплановых ремонтах.

Работы, выполненные в ходе всех планово-предупредительных и внеплановых ремонтов, заносятся в соответствующие паспорта и журналы эксплуатации и ремонта средств электрохимзащиты.

10. Контрольно-измерительные пункты

Для контроля состояния комплексной защиты на подземных сооружениях должны быть оборудованы контрольно-измерительные пункты (КИП), на которых указывается привязка точки присоединения контрольного провода к сооружению.

Эксплуатация контрольно-измерительных пунктов (КИП) предусматривает проведение технического обслуживания и ремонтов (текущих и капитальных), направленных на обеспечение их надежной работы. При техническом обслуживании должны проводиться периодические осмотры КИП, профилактические проверки и измерения, устраняться мелкие повреждения, неисправности и т.д.

Контрольно-измерительные пункты (КИП) устанавливают на подземном сооружении после укладки его в траншею до засыпки землей. Установку контрольно-измерительных пунктов на действующих сооружениях выполняют в специальных шурфах.

Контрольно-измерительные пункты устанавливают над сооружением не далее 3 м от точки подключения к сооружению контрольного провода.

В случае расположения сооружения на участке, где эксплуатация контрольно-измерительных пунктов затруднена, последние могут быть установлены в ближайших удобных для эксплуатации местах, но не далее 50 м от точки подключения контрольного провода к сооружению.

Контрольно-измерительные пункты на подземных металлических сооружениях должны обеспечивать надежный электрический контакт проводника с защищаемым сооружением; надежную изоляцию проводника от грунта; механическую прочность при внешних воздействиях; отсутствие электрического контакта между электродом сравнения и сооружением или контрольным проводником; доступность для обслуживающего персонала и возможность проведения измерения потенциалов не зависимо от сезонных условий.

Текущий осмотр КИПов выполняется объездным методом на протяжении всего периода работы сооружений ЭХЗ между плановыми текущими ремонтами и во время сезонных измерений защитных потенциалов бригадой рабочих в составе не менее двух человек. Перед выполнением работ на контрольно-измерительных пунктах необходимо:

Провести замер загазованности.

Определить рабочую зону и обозначить ее соответствующими знаками безопасности.

При текущем осмотре КИПа выполняются следующие виды работ:

Внешний осмотр КИПа;

Проверка исправности контрольного вывода и выводов от электродов и датчиков, установленных в КИПе;

Выравнивание КИПа перпендикулярно трубопроводу.

Производство измерений

Провести замер загазованности;

произвести внешний осмотр КИПа;

Определить пикет и номер защищаемого сооружения на опознавательной табличке;

Открыть запорное устройство КИПа и снять крышку;

достать прибор для измерения защитного потенциала;

произвести измерения на клемной колодке КИПа;

одеть крышку КИПа и закрыть запорное устройство;

убрать установленные знаки безопасности;

Продолжить движение вдоль защищаемого сооружения к следующему контрольно-измерительному пункту (КИП).

12. Текущий ремонт (ТР)

При ТР контрольно-измерительных пунктов выполняются все подготовительные работы, работы текущего осмотра и следующие виды работ:

Проверка исправности контрольного вывода и выводов от электродов и датчиков, установленных в КИПе;

чистка запорных устройств крышек головок колонок;

смазка трущихся поверхностей смазкой ЦИАТИМ 202.

окраска контрольно-измерительных колонок, стоек столбиков;

одерновка или восстановление щебеночных отмостков;

обновление и (или) восстановление опознавательных табличек;

проверку изоляции контрольных проводов (выборочно);

проверку контактов контрольных выводов с трубой (выборочно).

13. Капитальный ремонт (КР)

При выполнении капитального ремонта КИП производится замена поврежденных колонок, стоек или столбиков, замена контрольного кабеля.

При ремонте контрольно-измерительных пунктов должны быть выполнены работы в приведенной последовательности:

провести замер загазованности;

обозначить рабочую зону соответствующими знаками безопасности;

отрыть котлован для установки пункта;

открыть крышку пункта;

при необходимости произвести приварку контрольных выводов кабеля к трубе;

заизолировать место приварки, восстановить теплоизоляционное покрытие трубопровода;

протянуть кабели или провода в полость стойки пункта, предусмотрев их резерв 0,4 м;

установить стойку в котлован вертикально;

засыпать котлован грунтом с уплотнением последнего;

выполнить подсоединение кабелей или проводов к клеммам клеммной панели;

выполнить маркировку кабелей (проводов) и клемм, соответствующую схеме соединений;

закрыть крышку пункта;

нанести на верхнюю часть стойки масляной краской порядковый номер пункта по трассе трубопровода;

закрепить грунт вокруг пункта в радиусе 1 м смесью песка со щебнем фракцией до 30 мм;

убрать установленные знаки безопасности.

До установки контрольно-измерительного пункта на его подземную часть необходимо нанести антикоррозионный состав, а надземную часть окрасить в соответствии с корпоративными цветами «Газпром».

Анодное заземление

По расположению относительно поверхности грунта заземления бывают двух видов - поверхностные и глубинные.


Как и все технологические установки, глубинные анодные заземления (ГАЗ) требуют правильной технической эксплуатации и своевременного обслуживания.

Осмотр состояния ГАЗ, обслуживание (подтяжка контакта дренажного кабеля и покраска ГАЗ) измерения сопротивления и токов анода с целью определения девиации сопротивления растеканию проводится 1 раз в год после схождения талых вод и просыхания грунта. Результаты записываются в журнал СКЗ и паспорт СКЗ.

В случае увеличения сопротивления ГАЗ (это может быть замечено и по показаниям амперметра СКЗ или снижения потенциала в точке дренажа) снижается зона защиты.

Обслуживание, периодические измерения ГАЗ, регистрация измерений в полевом журнале УКЗ и анализ позволяют обеспечивать надежную зону защиты газопроводов и прогнозировать дальнейшие мероприятия по ремонту и восстановлению ГАЗ.

При эксплуатации системы катодной защиты подземных трубопроводов с глубинными анодными заземлителями (ГАЗ) возникает проблема замены их после окончания срока использования. Этот процесс сложен, а затраты сопоставимы с установкой нового заземлителя. Стремление максимально использовать скважину привело к тому, что для материала заземлителя используются благородные, малорастворимые металлы, в результате чего срок службы их возрастает. Однако стоимость строительства таких ГАЗ значительно выше, чем заземлителей из черных металлов. В последние годы интенсивно ведутся поиски ГАЗ заменяемой конструкции. Таким образом, повышение эффективности катодной защиты любого подземного трубопровода может быть достигнуто использованием изолирующих фланцев или изолирующих вставок. При этом наибольший технико-экономический эффект дает применение изолирующих фланцев.

В настоящее время большой интерес представляю протяжённые гибкие аноды (ПГА) для катодной защиты (КЗ) нефтепромысловых объектов для обеспечения возможности снижения затрат на антикоррозионную защиту трубопроводов и НПО.


Конструктивная особенность анодных узлов, для защиты РВС, не позволяет располагать их горизонтально на днище из-за возможной закупорки донными осадками перфорационных отверстий диэлектрической оболочки. Эксплуатация при вертикальном расположении анодов допускается при уровне водной фазы не ниже 3 м и наличия системы аварийного отключения СКЗ, при меньшем уровне применяется протекторная защита.

Технологическая эффективность применения ПГА

Для подтверждения заявленных заводом-изготовителем технических характеристик ПГА марки ЭЛЭР-5В при защите от внутренней коррозии (ВК) ёмкостного оборудования специалистами НГДУ «NN» совместно с институтом «ТатНИПИнефть» разработаны и утверждены программы и методики стендовых и промысловых испытаний ПГА. Стендовые испытания образцов электродов ЭЛЭР-5В проведены на базе ЦАКЗО НГДУ «NN». Промысловые испытания проведены также на объектах НГДУ «NN»: на ДНС-2 ЦДНГ-5 (РВС-2000) и на УПВСН ЦКППН (горизонтальный отстойникГО-200).


В ходе стендовых испытаний (рис. 1) определялись скорости анодного растворения электрода ЭЛЭР-5В в сточной воде при значениях максимально допустимой линейной плотности тока ив два раза превышающей её и влияние нефти на технические характеристики электродов. Выявлено, что после блокирования поверхности ПГА нефтепродуктами электроды способны полностью восстанавливать свою работоспособность (самоочищаться) через 6-15 суток. Визуальный осмотр внешней поверхности образцов, участвовавших в исследовании, изменений не выявил.


Стендовые испытания подтвердили заявленные заводом-изготовителем технические характеристики ПГА марки ЭЛЭР-5В.


При подготовке к промысловым испытаниям выполнены расчёты параметров ЭХЗ внутренней поверхности РВС и ГО. С учётом специфики конструкции ПГА разработаны монтажные схемы (рис. 2 и 3) их размещения внутри ёмкостного оборудования.

Расчётная длина электрода для ГО-200 составила 40 м, расстояние между поверхностями «анод-дно» - 0,7 м. Суммарный ток защиты- 6 А, выходное напряжение станции катодной защиты- 6 В, мощность станции катодной защиты- 1,2 кВт.

Расчётная длина электрода для РВС-2000 составила 115 м, расстояние между поверхностями «анод-дно» - 0,25 м, «анод-боковая поверхность» - 0,8 м. Суммарный ток защиты - 20,5 А, выходное напряжение станции катодной защиты - 20 В,мощность станции катодной защиты- 0,6 кВт.

Расчётный срок службы для обоих вариантов - 15 лет.

В процессе испытаний на объектах контролировались параметры на выходе СКЗ и проводилась регулировка силы тока. Смещение потенциала, измеренное по стальному измерительному электроду, находилось в пределах от 0,1 до 0,3 В.

Согласно акту испытаний специалистами института «ТатНИПИнефть» и НГДУ «NN» проведён осмотр ПГА, смонтированного в ГО(200 м 3) на УПВСН (рис. 4). Наработка анода составила 280 сут. Результаты осмотра ПГА показали его удовлетворительное состояние.


16. Экономическая эффективность применения ПГА

Конструктивные особенности и характеристики гибких анодов ЭЛЭР-5В, по данным НГДУ, позволили снизить затраты на обустройство ГО в сравнении с протекторной защитой на 41 %. Кроме этого, с внедрением анодов ЭЛЭР-5В отмечено снижение энергопотребления на защиту РВС до 16 раз. Потребляемая мощность на защиту РВС НГДУ «NN» составила 0,03 кВт (по ОАО «Татнефть» от 0,06 до 0,5 кВт). Согласно методике расчёта экономического эффекта, представленной НГДУ «NN», при внедрении данного типа анодов в сравнении с протекторной защитой экономический эффект составит 2,5млн руб. (на среднегодовой объём вывода ГО в ремонт и очистку по ОАО «Татнефть»).Ожидаемый экономический эффект от внедрения ПГА в РВС, ежегодно выводимых в ремонт по ОАО «Татнефть», составляет 3,7 млн. руб. Суммарный годовой эффект составит не менее 6 млн. руб.

Основные выводы:

Проведённые стендовые и промысловые испытания ПГА на объектах НГДУ «NN» показали их высокую эффективность при защите ёмкостного оборудования от внутренней коррозии (ВК).

Применение ПГА в ОАО «Татнефть» для защиты ёмкостного оборудования от ВК за счёт снижения затрат при обустройстве и эксплуатации позволит получить экономический эффект не менее 6 млн руб.

17. Протекторная защита

Защита подземных сооружений от почвенной коррозии при помощи протекторов при определенных условиях эффективна и проста в эксплуатации.

Одна из положительных особенностей протекторной защиты - ее автономность.

Она может быть осуществлена в районах, где отсутствуют источники электроэнергии.


Системы протекторной защиты возможно использовать в качестве основной ЭХЗ:

При осуществлении временной защиты;

В качестве резервной защиты;

для выравнивания потенциала вдоль трубопровода;

для защиты переходов;

На трубопроводах небольшой протяженности.

Протекторы могут иметь различную форму и размеры и изготавливаться в виде отдельных отливок или пресс-форм, стержней, браслетного типа (полуколец), протяженных прутков, проволок и лент.

Эффективность протекторной защиты зависит от:

Физико-химических свойств протектора;

внешних факторов, обуславливающих режим его использования.

Основными характеристиками протекторов являются:

электродный потенциал;

токоотдача;

коэффициент полезного действия протекторного сплава, от которых зависят срок службы и оптимальные условия их применения.

Конструкция протекторов должна обеспечивать надежный электрический контакт протекторов с сооружением, который не должен нарушаться в процессе их монтажа и эксплуатации.

Для осуществления электрического контакта между защищаемым сооружением и протектором последний должен иметь арматуру в виде полосы или стержня. Арматура вставляется в протекторный материал во время изготовления протектора.

В России при защите подземных металлических сооружений от коррозии наибольшее применение нашли протекторы типа ПМУ, представляющие собой магниевые аноды типа ПМ, упакованные в бумажные мешки вместе с активатором.

В центре (по продольной оси) протектора ПМ имеется контактный стержень из стального оцинкованного прутка. К контактному сердечнику приварен провод длиной 3 м. Место соединения проводника со стержнем тщательно изолировано. Стационарный потенциал магниевых протекторов типа ПМУ равен -1,6 В относительно м.с.э. Теоретическая токоотдача равна 2200 А*ч/кг.

С целью уменьшения сопротивления растеканию и обеспечения устойчивой работы протектор помещается в порошкообразный активатор, представляющий собой обычно смесь бентонита (50%), гипса (25%) и сернокислого натрия (25%). Удельное электросопротивление активатора должно быть не более 1 Ом*м.

Гипс препятствует образованию на поверхности протектора слоев с плохой проводимостью, что способствует равномерному износу протектора.

Бентонит (глина) вводят для поддержания в активаторе влаги, кроме того, глина замедляет растворение солей грунтовыми водами, тем самым сохраняя постоянной проводимость, и увеличивает срок службы активатора.

Сернокислый натрий дает легкорастворимые соединения с продуктами коррозии протектора, чем обеспечивает постоянство его потенциала и резкое уменьшение удельное сопротивление активатора.

В качестве активатора для протекторов ни в коем случае нельзя использовать коксовую мелочь.

После установки протектора в грунт его токоотдача устанавливается в течение нескольких суток.

Токоотдача протекторов существенно зависит от удельного сопротивления грунта. Чем ниже удельное электрическое сопротивление, тем выше токоотдача протекторов.

Поэтому протекторы следует размещать в местах с минимальным удельным сопротивлением и ниже уровня промерзания грунта.

18. Дренажная защита

Значительную опасность для магистральных трубопроводов представляют блуждающие токи электрифицированных железных дорог, которые в случае отсутствия защиты трубопровода вызывают интенсивное коррозионное разрушение в анодных зонах.


Дренажная защита - отвод (дренирование) блуждающих токов от трубопровода с целью снижения скорости его электрохимической коррозии; обеспечивает поддержание на трубопроводе стабильного защитного потенциала (создание устойчивой катодной <#"700621.files/image019.gif">

Принципиальная схема дренажной защиты:

Тяговая рельсовая сеть;

Электродренажное устройство;

Элемент защиты от перегрузок;

Элемент регулирования тока электродренажа;

Поляризованный элемент - вентильные блоки, собранные из нескольких,

соединенных параллельно лавинных кремниевых диодов;

Защищаемое подземное сооружение.

Дренажная защита на наших предприятиях не применяется в связи с отсутствием блуждающих токов и электрофицированных железных дорог.

Список литературы

1. Бэкман В, Швенк В. Катодная защита от коррозии: Справочник. М.: Металлургия, 1984. - 495 с.

Волков Б.Л., Тесов Н.И., Шуванов В.В. Справочник по защите подземных металлических сооружений от коррозии. Л.: Недра, 1975. - 75с.

3. Дизенко Е.И., Новоселов В.Ф. и др. Противокоррозионная защита трубопроводов и резервуаров. М.: Недра, 1978. - 199 с.

Единая система защиты от коррозии и старения. Сооружения подземные. Общие требования к защите от коррозии. ГОСТ 9.602-89. М.: Издательство стандартов. 1991.

Жук Н.П. Курс теории коррозии и защиты металлов. М.: Металлургия, 1976.-472 С.

Красноярский В.В. Электрохимический метод защиты металлов от коррозии. М.: Машгиз, 1961.

Красноярский В.В., Цикерман Л.Я. Коррозия и защита подземных металлических сооружений. М.: Высшая школа,1968. - 296 с.

Ткаченко В.Н. Электрохимическая защита трубопроводных сетей. Волгоград: ВолгГАСА, 1997. - 312 с.

Больше 15 лет я разрабатываю станции катодной защиты. Требования к станциям четко формализованы. Есть определенные параметры, которые должны быть обеспечены. А знание теории защиты от коррозии совсем не обязательно. Гораздо важнее знание электроники, программирования, принципов конструирования электронной аппаратуры.

Создав этот сайт, я не сомневался, что когда-нибудь там появится раздел катодная защита. В нем я собираюсь писать о том, что я хорошо знаю, о станциях катодной защиты. Но как-то не поднимается рука писать о станциях, не рассказав, хотя бы коротко, о теории электрохимической защиты. Постараюсь рассказать о таком сложном понятии как можно проще, для не профессионалов.

По сути это источник вторичного электропитания, специализированный блок питания. Т.е. станция подключается к питающей сети (как правило ~ 220 В) и вырабатывает электрический ток с заданными параметрами.

Вот пример схемы системы электрохимической защиты подземного газопровода с помощью станции катодной защиты ИСТ-1000.

Станция катодной защиты установлена на поверхности земли, вблизи от газопровода. Т.к. станция эксплуатируется на открытом воздухе, то она должна иметь исполнение IP34 и выше. В этом примере используется современная станция, с контроллером GSM телеметрии и функцией стабилизации потенциала.

В принципе, бывают очень разными. Они могут быть трансформаторными или инверторными. Могут быть источниками тока, напряжения, иметь различные режимы стабилизации, различные функциональные возможности.

Станции прошлых лет это громадные трансформаторы с тиристорными регуляторами. Современные станции это инверторные преобразователи с микропроцессорным управлением и GSM телемеханикой.

Выходная мощность устройств катодной защиты, как правило, находится в диапазоне 1 – 3 кВт, но может доходить и до 10 кВт. Станциям катодной защиты и их параметрам посвящена отдельная статья.

Нагрузкой для устройства катодной защиты является электрическая цепь: анодное заземление – почва – изоляция металлического объекта. Поэтому требования к выходным энергетическим параметрам станций, прежде всего, определяют:

  • состояние анодного заземления (сопротивление анод-почва);
  • почва (сопротивление грунта);
  • состояние изоляции объекта защиты от коррозии (сопротивление изоляции объекта).

Все параметры станции определяются при создании проекта катодной защиты:

  • рассчитываются параметры трубопровода;
  • определяется величина защитного потенциала;
  • рассчитывается сила защитного тока;
  • определяется длина защитной зоны;
  • 0 Рубрика: . Вы можете добавить в закладки.

7 Требования к техническому обслуживанию и ремонту установок ЭХЗ в процессе эксплуатации
7.1 Техническое обслуживание и ремонт установок ЭХЗ в процессе эксплуатации проводятся для их содержания в состоянии полной работоспособности, предупреждения преждевременного износа и отказов в работе и осуществляются в соответствии с графиком технического обслуживания и планово-предупредительных ремонтов.

7.2 График технического обслуживания и планово-предупредительных ремонтов должен включать определение видов и объемов технического обслуживания и ремонтных работ, сроки их проведения, указания по организации учета и отчетности о выполненных работах

7.3 На каждой защитной установке необходимо иметь журнал контроля, в который заносятся результаты осмотра и измерений, Приложение Ж.

7.4 Техническое обслуживание и планово-предупредительные ремонты проводятся:


  • техническое обслуживание – 2 раза в месяц для катодных, 4 раза в месяц – для дренажных установок и 1 раз в 3 месяца – для установок гальванической защиты (при отсутствии средств телемеханического контроля). При наличии средств телемеханического контроля сроки проведения технических осмотров устанавливаются руководством ОЭТС с учетом данных о надежности устройств телемеханики;

  • техническое обслуживание с проверкой эффективности – 1 раз в 6 месяцев;

  • текущий ремонт – 1 раз в год;

  • капитальный ремонт –1 раз в 5 лет
7.5 Техническое обслуживание включает:

  • осмотр всех элементов установки с целью выявления внешних дефектов, проверку плотности контактов, исправности монтажа, отсутствия механических повреждений отдельных элементов, отсутствия подгаров и следов перегревов, отсутствия раскопок на трассе дренажных кабелей и анодных заземлений;

  • проверку исправности предохранителей (если они имеются);

  • очистку корпуса дренажного и катодного преобразователя, блока совместной защиты снаружи и внутри;

  • измерение тока и напряжения на выходе преобразователя или между гальваническими анодами (протекторами) и трубами;

  • измерение потенциала трубопровода в точке подключения установки;

  • производство записи в журнале установки о результатах выполненной работы;

  • устранение выявленных в процессе осмотра дефектов и неисправностей, не требующих дополнительных организационно-технических мероприятий.
7.6 Технический обслуживание с проверкой эффективности защиты включает:

  • все работы по техническому осмотру;

  • измерения потенциалов в постоянно закрепленных опорных пунктах.

  • 7.7 Текущий ремонт включает:

  • все работы по техническому осмотру с проверкой эффективности;

  • измерение сопротивления изоляции питающих кабелей;

  • одну или две из указанных ниже работ: ремонт линий питания (до 20% протяженности), ремонт выпрямительного блока, ремонт блока управления, ремонт измерительного блока, ремонт корпуса установки и узлов крепления, ремонт дренажного кабеля (до 20% протяженности), ремонт контактного устройства контура анодного заземления, ремонт контура анодного заземления (в объеме менее 20%).
7.8 Капитальный ремонт включает:

  • все работы по техническому осмотру с проверкой эффективности действия ЭХЗ;

  • более двух работ из перечня ремонтов, перечисленных в пункте 7.7 настоящего стандарта, либо ремонт в объеме более 20% - протяженности линия питания, дренажного кабеля, контура анодного заземления.
7.9 Внеплановый ремонт – вид ремонта, вызванный отказом в работе оборудования и не предусмотренный годовым планом ремонта. При этом отказ в работе оборудования должен быть зафиксирован аварийным актом, в котором указываются причины аварии и подлежащие устранению дефекты.

7.10 С целью оперативного выполнения внеплановых ремонтов и сокращения перерывов в работе ЭХЗ в организациях, эксплуатирующих устройства ЭХЗ, следует иметь резервный фонд преобразователей для катодной и дренажной защиты из расчета - 1 резервный преобразователь на 10 действующих.

8 Требования к методам контроля за эффективностью работы установок ЭХЗ в процессе эксплуатации .
8.1 Контроль эффективности ЭХЗ трубопроводов тепловых сетей производят не реже, чем 2 раза в год (с интервалом не менее 4 месяцев), а также при изменении параметров работы установок ЭХЗ и при изменении коррозионных условий, связанных с:


  • прокладкой новых подземных сооружений;

  • в связи с проведением ремонтных работ на тепловых сетях;

  • установкой ЭХЗ на смежных подземных коммуникациях.
Примечание. Контроль эффективности действия средств ЭХЗ при расположении АЗ и протекторов как в каналах, так и за их пределами, производится лишь при затоплении (заиливании) каналов, достигающих поверхности теплоизоляционной конструкции.

8.2 При проверке параметров электродренажной защиты измеряют дренажный ток, устанавливают отсутствие тока в цепи дренажа при перемене полярности трубопровода относительно рельсов, определяют порог срабатывания дренажа (при наличии реле в цепи дренажа или цепи управления), а также сопротивление в цепи электродренажа.

8.3 При проверке параметров работы катодной станции измеряют ток катодной защиты, напряжение на выходных клеммах катодной станции и потенциал трубопровода на контактном устройстве.

8.4 При проверке параметров установки гальванической защиты (при расположении протекторов в каналах или камерах) измеряют:


  1. силу тока в цепи между секциями протекторов и трубопроводами;

  2. величину смещения разности потенциалов между трубопроводом и измерительными электродами до и после подключения секций протекторов к трубопроводам.
8.5 Контроль эффективности действия средств ЭХЗ на трубопроводах тепловых сетей

бесканальной и канальной прокладок с размещением АЗ за пределами канала осуществляется по разности потенциалов между трубопроводом и МЭС, установленным в стационарном или нестационарном КИПе (в последнем случае с помощью переносного МЭС).

8.6 Схема переносного МЭС приведена на рисунке 4 Приложения А СТО-117-2007 «Трубопроводы тепловых сетей. Защита от коррозии. Условия создания. Нормы и требования», схема и технические характеристики МЭС типа ЭНЕС и ЭСН-МС, устанавливаемых в стационарных КИП, приведены в Приложении П СТО-117-2007 «Трубопроводы тепловых сетей. Защита от коррозии. Условия создания. Нормы и требования».

8.7 Стационарные КИПы должны устанавливаться на участках тепловых сетей, где ожидаются минимально и максимально допустимые значения защитных потенциалов, в местах пересечения тепловых сетей с рельсами электрифицированного транспорта

8.8 При отсутствии стационарных КИПов переносный МЭС устанавливают на поверхности земли между трубопроводами (в плане), на дне тепловой камеры (при наличии в ней воды). Перед установкой электродов грунт должен быть разрыхлен на глубину 4-5 см и из него должны быть удалены твердые включения размером более 3 мм. Если грунт сухой, его следует увлажнить до полного водонасыщения водопроводной водой.Для проведения измерений используют приборы типа ЭВ 2234, 43313.1, ПКИ-02.

8.9 Продолжительность измерений при отсутствии блуждающих токов должна составлять не менее 10 минут с непрерывной регистрацией или с ручной записью результатов через каждые 10 сек. При наличии блуждающих токов трамвая с частотой движения 15-20 пар в час измерения необходимо проводить в часы утренней или вечерней пиковой нагрузки электротранспорта.

В зоне влияния блуждающих токов электрофицированных железных дорог период измерения должен охватывать пусковые моменты и время прохождения электропоездов в обе стороны между двумя ближайшими станциями.

8.10 Значения разности потенциалов между трубопроводами и МЭС в зоне действия защиты могут находиться в пределах от минус 1,1 до минус 3,5 В.

8.11 Среднее значение разности потенциалов U ср (В) вычисляют по формуле:

U ср = U i /n, (8.1)

где U i – сумма значений разности потенциалов; n – общее число отсчетов.

Результаты измерений заносят в протокол (Приложение И настоящего стандарта), а также фиксируют на картах-схемах тепловых сетей.

8.12 При обнаружении неэффективной работы установок катодной или дренажной защиты (сокращены зоны их действия, потенциалы отличаются от допустимых защитных) необходимо произвести регулирование режима работы установок ЭХЗ.

8.13Сопротивление растеканию тока АЗ следует определять во всех случаях, когда режим работы катодной станции резко меняется, но не реже 1 раза в год. Сопротивление растеканию тока АЗ определяют, как частное от деления напряжения на выходе катодной установки на ее выходной ток или при расположении АЗ за пределами канала с помощью приборов типа М-416, Ф-416, Ф 4103-М1 и стальных электродов по схеме, приведенной на рис. 1. Измерения следует производить в наиболее сухое время года. Дренажный провод (6) на время измерений следует отключить. При длине Lаз питающий электрод (5) относят на расстояние в  3Lаз, вспомогательный электрод (4) – на расстояние а  2Lаз.

1 – анодные заземлители; 2 – контрольно-измерительный пункт; 3 – измерительный прибор; 4 – вспомогательный электрод; 5 – питающий электрод; 6 – дренажный провод.

Рисунок 1 -Измерение сопротивления растеканию анодного заземления

При расположении АЗ в каналах сопротивление растеканию тока АЗ определяют при затоплении или заиливании канала до уровня изоляционной конструкции труб. При наличии нескольких плеч АЗ их сопротивление растеканию тока определяют раздельно.

8.14 Контроль эффективности действия средств ЭХЗ на трубопроводах тепловых сетей канальной прокладки при расположении АЗ и гальванических анодов (протекторов) непосредственно в каналах, осуществляется по значению смещения разности потенциалов между трубопроводом и установленным на его поверхности (или теплоизоляционной конструкции) ВЭ в сторону отрицательных значений в пределах от 0,3 до 0,8 В.

При ЭХЗ с помощью протекторов из магниевого сплава смещение разности потенциалов между ВЭ и трубопроводом должно быть не менее 0,2 В.

8.15 До начала проведения измерительных работ в заданной зоне ЭХЗ определяются уровни затопления канала и камер при наличии возможности визуально или инструментальным методом. В последнем случае определяется уровень затопления, достигающий пунктов установки ВЭ на подающем и обратном трубопроводах – на уровне нижней образующей теплоизоляционной конструкции.

8.16 Проверка наличия воды на уровне установки ВЭ производится в такой последовательности:

Отключают станции катодной защиты (протекторы при их применении не отключают);

К проводнику от трубопровода на КИПе и ВЭ подключают мегаомметр;

При снятой на КИПе перемычке между трубопроводом и ВЭ измеряют электрическое сопротивление R.

Значение R  10,0 кОм указывает на наличие воды в канале (камера) на уровне установки ВЭ или выше него.

Аналогичные измерения производят в других пунктах, где установлены ВЭ.

8.17 Измерение потенциала трубопроводов по отношению к ВЭ на участках, где затопление канала на уровне установки ВЭ или выше него (после технического осмотра установок ЭХЗ) производится в такой последовательности:

При выключенной СКЗ подключить вольтметр к клеммам контрольного пункта: положительный зажим вольтметра – к клемме «Т» (трубопровод), отрицательный – к клемме вспомагательного электрода. Для измерений используют вольтметр с входным сопротивлением не ниже 200 кОм на 1,0 В шкалы прибора (мультиметр типа 43313.1, вольтамперметр типа ЭВ 2234). Тумблер или перемычка должны быть разомкнуты.

Не менее, чем через 30 мин после отключения СКЗ зафиксировать исходное значение разности потенциалов между трубопроводом и ВЭ (И исх.) с учетом полярности (знака).

Включить СКЗ, установив режим ее работы при минимальных значениях силы тока и напряжения.

Увеличением силы тока в цепи СКЗ установить ее значение при достижении разности потенциалов между трубопроводом и ВЭ: И’ т-в.э. в пределах от минус 600 до минус 900 мВ (не ранее, чем через 10 мин после установки значения силы тока).

Вычислить И т-в.э. с учетом И исх.

И т-в.э. = И т-в.э. – И исх. , мВ

Пример расчета № 1 .

И исх. = -120 мВ, И’ т-в.э. = -800 мВ.

И т-в.э. = -800 – (-120) = -680 мВ.

Пример расчета № 2 .

И исх. = +120 мВ, И’ т-в.э. = -800 мВ

И т-в.э. –800 – (120) = -920 мВ.

8.18 Если полученные значения И т-в.э. на КИП зоны действия защиты (на участках затопления или заноса канала грунтом) не находятся в пределах значений минус 300 –800 мВ, производится регулировка силы тока преобразователя.

Примечание. Увеличение силы тока преобразователя должно производиться с учетом предельно допустимого значения напряжения на выходе преобразователя, равного 12,0 В.

8.19 По окончании измерительных работ, если ВЭ изготовлен из углеродистой стали, производят замыкание ВЭ с трубопроводом. Если ВЭ изготовлен из нержавеющей стали, ВЭ с трубопроводом не замыкают.

8.20 При неисправностях ВЭ (повреждения проводников, крепления к трубопроводу ВЭ) в доступных пунктах устанавливают у поверхности теплоизоляционной конструкции переносной ВЭ, с помощью которого производят изложенные выше измерительные работы.

8.21 При обнаружении участков трубопроводов, не подверженных затоплению и не контактирующих с грунтом заноса в зоне отдельного плеча анодного заземлителя, указанный участок (плечо) целесообразно отключить из системы ЭХЗ до момента обнаружения затопления канала на этом участке. После отключения указанного участка необходима дополнительная регулировка режима работы СКЗ. Целесообразно переоборудовать СКЗ, применив устройство для автоматического включения или отключения СКЗ (или отдельных участков трубопроводов) в зависимости от уровня затопления канала на этих участках.

8.22 Контроль эффективности действия ЭХЗ с применением гальванических анодов (протекторов) из магниевых сплавов, размещенных на дне или стенках каналов осуществляется после проведения работ, указанных в пунктах 8.15-8.16 настоящего стандарта.

8.23 При фиксации затопления канала на участке установки ВЭ производится проверка действия протекторной защиты измерением:

Силы тока в цепи звена (группы) «протекторы - трубопровод»;

Потенциала протектора или группы протекторов, отключенных от трубопровода, относительно медносульфатного электрода сравнения, установленного на дне канала (при наличии возможности) или над каналом в зоне установки контролируемой группы протекторов;

Потенциала трубопровода по отношению к ВЭ при отключенной и включенной группе протекторов. Данные заносят в протокол, приведенный в Приложении К настоящего стандарта.

Измерения указанных параметров производят лишь при наличии возможности отключения группы протекторов от трубопроводов и подключения измерительных приборов.

Наличие тока в цепи «протекторы – трубопровод» свидетельствует о целостности указанной цепи;

Потенциалы протекторов, отключенных от трубопровода, значения которых (по абсолютной величине) не ниже 1,2 В, характеризуют протекторы, как исправные (потенциалы протекторов измеряют лишь при наличии электролитического контакта протекторов с электролитом - водой на дне канала);

Разность потенциалов между трубопроводом и ВЭ при включенной и выключенной группе протекторов, составляющая не менее 0,2 В, характеризует эффективностью действия протекторной защиты трубопроводов.

8.24 Прямая оценка опасности коррозии и эффективности действия ЭХЗ трубопроводов тепловых сетей канальной прокладки и на участках их прокладки в футлярах может производиться с помощью индикаторов скорости коррозии типа БПИ-1 или БПИ-2. Сущность метода прямой оценки опасности коррозии и эффективности действия ЭХЗ, методов обработки данных при обследовании состояния поверхности БПИ-1, при срабатывании БПИ-2 изложены в разделе 11 СТО-117-2007 «Трубопроводы тепловых сетей. Защита от коррозии. Условия создания. Нормы и требования»

8.25 Исправность ЭИС проверяют не реже 1 раза в год. Для этой цели используют специальные сертифицированные индикаторы качества электроизолирующих соединений. При отсутствии таких индикаторов измеряют падение напряжения на электроизолирующем соединении или синхронно потенциалы трубы по обеим сторонам электроизолирующего соединения. Измерения проводят при помощи двух милливольтметров. При исправном электроизолирующем соединении синхронное измерение показывает скачок потенциала. Результаты проверки оформляют протоколом согласно Приложению Л настоящего стандарта.

8.26 Если на действующей установке ЭХЗ в течение года наблюдалось шесть и более отказов в работе преобразователя, последний подлежит замене. Для определения возможности дальнейшего использования преобразователя необходимо провести его испытание в объеме, предусмотренном требованиями предустановочного контроля.

8.27 В случае, за все время эксплуатации установки ЭХЗ общее количество отказов в ее работе превысит 12, необходимо провести обследование технического состояния трубопроводов по всей длине защитной зоны.

8.28 Суммарная если продолжительность перерывов в работе установок ЭХЗ не должна превышать 14 суток в течение года.

8.29 В тех случаях, когда в зоне действия вышедшей из строя установки ЭХЗ защитный потенциал трубопровода обеспечивается соседними установками ЭХЗ (перекрывание зон защиты), то срок устранения неисправности определяется руководством эксплуатационной организации.

8.30 Организации, осуществляющие эксплуатацию установок ЭХЗ, должны ежегодно составлять отчет об отказах в их работе.
9 Требования к организации контроля и технического обслуживания защитных покрытий в процессе эксплуатации

9.1 В процессе эксплуатации защитных покрытий трубопроводов тепловых сетей осуществляется периодический контроль их состояния

9.2 Контролю и обслуживанию в обязательном порядке подлежат защитные покрытия трубопроводов тепловых сетей расположенных на доступных участках:

Трубопроводы надземной прокладки;

Трубопроводы в тепловых камерах;

Трубопроводы в проходных каналах и коллекторах;

Трубопроводы в смотровых колодцах.

9.3 Контроль состояния защитных покрытий трубопроводов тепловых сетей, расположенных в непроходных, полупроходных каналах а также трубопроводов тепловых сетей бесканальной прокладки осуществляется при контрольных вскрытиях тепловых сетей. Обслуживание и ремонт покрытий на данных участках трубопроводов осуществляется при аварийных ремонтах

9.4 Методы проверки показателей качества и устранения обнаруженных дефектов защитных покрытий в полевых условиях приведены в разделе 9 СТО-117-2007 «Трубопроводы тепловых сетей. Защита от коррозии. Условия создания. Нормы и требования».

9.5 Выбор защитного покрытия для осуществления ремонта определяется назначением * теплопровода (магистральные тепловые сети, квартальные (распределительные)тепловые сети) и видами проводимых работ, которые направлены на обеспечение эксплуатационной надежности тепловых сетей, таблица 1.

9.6 Качество защитных антикоррозионных покрытий, наносимых в процессе выполнения ремонтных работ, проверяется с составлением Актов скрытых работ и с занесением результатов контроля качества в Журнал производства антикоррозионных работ согласно Приложения М настоящего стандарта

Виды защитных покрытий

Таблица 1


Назначение тепловых сетей и вид рекомендуемых покрытий

Виды работ, проводимых на тепловых сетях

Магистральные тепловые сети

Сети центрального отопления

Сети горячего водоснабжения

Антикоррозионная защита вновь сооружаемых тепловых сетей

Лакокрасочные

Силикатноэмалевые**

Металлизационное**

Алюмокерамическое**


Лакокрасочные

Лакокрасочные

Cиликатноэма-левые**


Антикоррозионная защита при реконструкции и капитальном ремонте тепловых сетей

Лакокрасочные

Силикатноэмалевые**

Металлизационное**

Алюмокерамическое**


Лакокрасочные

Лакокрасочные

Cиликатноэма-левые**


Антикоррозионная защита при текущем ремонте и ликвидациях повреждений тепловых сетей

Лакокрасочные

Лакокрасочные

Лакокрасочные

Примечания.

*В рамках данного Стандарта применяется следующее разделение тепловых сетей в зависимости от их назначения:

магистральные тепловые сети, обслуживающие крупные жилые территории и группы промышленных предприятий, – от источника тепла до ЦТП или ИТП;

квартальные (распределительные)тепловые сети (системы горячего водоснабжения и системы центрального отопления), обслуживающие группу зданий или промышленное предприятие, – от ЦТП или ИТП до присоединения к сетям отдельных зданий.

** При применении данных покрытий требуется последующая антикоррозионная защита сварных соединений и элементов трубопроводов тепловых сетей лакокрасочными материалами.

10 Требования безопасности при работах с защитными антикоррозионными

покрытиями и при эксплуатации устройств электрохимической защиты
10.1При выполнении работ по защите трубопроводов тепловой сети от наружной коррозии с помощью защитных антикоррозионных покрытий должны строго соблюдаться требования безопасности, приведенные в технических условиях на антикоррозионные материалы и защитные антикоррозионные покрытия, ГОСТ 12.3.005-75, ГОСТ 12.3.016-87, а также в действующих нормативных документах.

10.2К выполнению работ по нанесению на трубы защитных антикоррозионных покрытий могут допускаться только лица, обученные безопасным методам работы, прошедшие инструктаж и сдавшие экзамен в установленном порядке.

10.3Рабочий персонал должен быть осведомлен о степени токсичности применяемых веществ, способах защиты от их воздействия и мерах оказания первой помощи при отравлениях.

10.4 При применении и испытаниях защитных антикоррозионных покрытий, содержащих токсичные материалы (толуол, сольвент, этилцеллозольв и др.), должны соблюдаться правила техники безопасности и промышленной санитарии, санитарные и гигиенические требования к производственному оборудованию в соответствии с действующими нормативными документами

10.5Содержание вредных веществ в воздухе рабочей зоны при нанесении защитных антикоррозионных покрытий на трубы не должно превышать ПДК, согласно ГОСТ 12.1.005-88:

толуол – 50 мг/м 3 , сольвент – 100 мг/м 3 , алюминий - 2 мг/м 3 , оксид алюминия – 6 мг/м 3 , этилцеллозольв – 10 мг/м 3 , ксилол – 50 мг/м 3 , бензин – 100 мг/м 3 , ацетон – 200 мг/м 3 , уайт-спирит – 300 мг/м 3 ,

10.6Все работы, связанные с нанесением защитных антикоррозионных покрытий, содержащих токсичные вещества, должны производиться в цехах, оборудованных приточно-вытяжной и местной вентиляцией в соответствии с ГОСТ 12.3.005-75.

10.7При работах с защитными антикоррозионными покрытиями, содержащими токсичные вещества, следует применять индивидуальные средства защиты от попадания токсичных веществ на кожные покровы, на слизистые оболочки, в органы дыхания и пищеварения согласно ГОСТ 12.4.011-89 и ГОСТ 12.4.103-83.

10.8 При производстве на тепловых сетях работ по монтажу, ремонту, наладке установок ЭХЗ и электрическим измерениям необходимо соблюдать требования ГОСТ 9.602, Правил производства и приемки работ , санитарных и гигиенических требований .

10.9При проведении технического осмотра установок ЭХЗ должно быть отключено напряжение питающей сети и разомкнута цепь дренажа.

10.10 В течение всего периода работы опытной станции катодной защиты, включаемой на период испытаний (2-3 часа), у контура анодного заземлителя должен находиться дежурный, не допускающий посторонних лиц к анодному заземлителю, и должны быть установлены предупредительные знаки в соответствии с ГОСТ 12.4.026 -76.

10.11При электрохимической защите трубопроводов тепловых сетей с расположением анодных заземителей непосредственно в каналах напряжение постоянного тока на выходе станции катодной защиты (преобразователя, выпрямителя) не должно превышать 12 В.

10.12На участках трубопроводов тепловых сетей, к которым подключена станция катодной защиты, а анодные заземлители установлены непосредственно в каналах, под крышками люков тепловых камер на видном месте должны быть установлены таблички с надписью «Внимание! В каналах действует катодная защита».


  1. Требования к обращению с отходами производства и потребления, образующимися при защите трубопроводов тепловых сетей от наружной коррозии

11.1 Отходами производства и потребления, образующимися при защите трубопроводов тепловых сетей от наружной коррозии на этапе приемки в эксплуатацию и эксплуатации, следует считать:

Материалы, применяемые при производстве противокоррозионных покрытий и утратившие свои потребительские свойства (лакокрасочные материалы, растворители, отвердители);

Провода из цветных металлов, применяемые при производстве устройств электрохимической защиты и утратившие свои потребительские свойства.

11.2 Порядок обращения с отходами, образующимися при защите трубопроводов тепловых сетей от наружной коррозии, определяется в соответствии с разделом «Требования к обращению с отходами производства и потребления на этапах строительства и эксплуатации» СТО-118а-02-2007 «Системы теплоснабжения. Условия поставки. Нормы и требования».

6.8.1. Техническое обслуживание и ремонт средств электрохимической защиты подземных газопроводов от коррозии, контроль за эффективностью ЭХЗ и разработка мероприятий по предотвращению коррозионных повреждений газопроводов осуществляются персоналом специализированных структурных подразделений эксплуатационных организаций или специализированными организациями.

6.8.2. Периодичность выполнения работ по техническому обслуживанию, ремонту и проверке эффективности ЭХЗ устанавливается ПБ 12-529. Разрешается совмещать измерения потенциалов при проверке эффективности ЭХЗ с плановыми измерениями электрических потенциалов на газопроводах в зоне действия средств ЭХЗ.

6.8.3. Техническое обслуживание и ремонт изолирующих фланцев и установок ЭХЗ производятся по графикам, утверждаемым в установленном порядке техническим руководством организаций - владельцев электрозащитных установок. При эксплуатации средств ЭХЗ ведется учет их отказов в работе и времени простоя.

6.8.4. Техническое обслуживание катодных установок ЭХЗ включает в себя:

Проверку состояния контура защитного заземления (повторного заземления нулевого провода) и питающих линий. Внешним осмотром проверяется надежность видимого контакта проводника заземления с корпусом электрозащитной установки, отсутствие обрыва питающих проводов на опоре воздушной линии и надежность контакта нулевого провода с корпусом электрозащитной установки;

Осмотр состояния всех элементов оборудования катодной защиты с целью установления исправности предохранителей, надежности контактов, отсутствия следов перегревов и подгаров;

Очистку оборудования и контактных устройств от пыли, грязи, снега, проверку наличия и соответствия привязочных знаков, состояния коверов и колодцев контактных устройств;

Измерение напряжения, величины тока на выходе преобразователя, потенциала на защищаемом газопроводе в точке подключения при включенной и отключенной установке электрохимической защиты. В случае несоответствия параметров электрозащитной установки данным пусконаладки следует произвести регулировку ее режима работы;

Внесение соответствующих записей в эксплуатационном журнале.

6.8.5. Техническое обслуживание протекторных установок включает в себя:

Измерение потенциала протектора относительно земли при отключенном протекторе;

Измерение потенциала "газопровод-земля" при включенном и отключенном протекторе;

Величину тока в цепи "протектор - защищаемое сооружение".

6.8.6. Техническое обслуживание изолирующих фланцевых соединений включает в себя работы по очистке фланцев от пыли и грязи, измерении разности потенциалов "газопровод-земля" до и после фланца, падение напряжения на фланце. В зоне влияния блуждающих токов измерение разности потенциалов "газопровод-земля" до и после фланца следует производить синхронно.

6.8.7. Состояние регулируемых и нерегулируемых перемычек проверяют измерением разности потенциалов "сооружение-земля" в местах подключения перемычки (или в ближайших измерительных пунктах на подземных сооружениях), а также измерением величины и направления тока (на регулируемых и разъемных перемычках).

6.8.8. При проверке эффективности работы установок электрохимической защиты, кроме работ, выполняемых при техническом осмотре, производится измерение потенциалов на защищаемом газопроводе в опорных точках (на границах зоны защиты) и в точках, расположенных по трассе газопровода, через каждые 200 м в населенных пунктах и через каждые 500 м на прямолинейных участках межпоселковых газопроводов.

6.8.9. Текущий ремонт ЭХЗ включает в себя:

Все виды работ по техническому осмотру с проверкой эффективности работы;

Измерение сопротивления изоляции токоведущих частей;

Ремонт выпрямителя и других элементов схемы;

Устранение обрывов дренажных линий.

6.8.10. Капитальный ремонт установок ЭХЗ включает в себя работы, связанные с заменой анодных заземлителей, дренажных и питающих линий.

После капитального ремонта основное оборудование электрохимической защиты проверяется в работе под нагрузкой в течение времени, указанного заводом-изготовителем, но не менее 24 ч.

4.7 ЭКСПЛУАТАЦИЯ УСТАНОВОК ЭЛЕКТРОХИМИЧЕСКОЙ ЗАЩИТЫ

4.7.1 При эксплуатации установок ЭХЗ должны проводиться периодические технические осмотры и проверка эффективности их работы.

На каждой защитной установке необходимо иметь журнал контроля, в который заносятся результаты осмотра и измерений.

4.7.2 Обслуживание установок ЭХЗ в процессе эксплуатации должно осуществляться в соответствии с графиком технических осмотров и планово-предупредительных ремонтов. График технических осмотров и планово-предупредительных ремонтов должен включать определение видов и объемов осмотров и ремонтных работ, сроки их проведения, указания по организации учета и отчетности о выполненных работах.

Основное назначение работ - содержание установок ЭХЗ защиты в состоянии полной работоспособности, предупреждение их преждевременного износа и отказов в работе.

4.7.3 Технический осмотр включает:

Осмотр всех элементов установки с целью выявления внешних дефектов, проверку плотности контактов, исправности монтажа, отсутствия механических повреждений отдельных элементов, отсутствия подгаров и следов перегревов, отсутствия раскопок на трассе дренажных кабелей и анодных заземлений;

Проверку исправности предохранителей;

Очистку корпуса дренажного и катодного преобразователя, блока совместной защиты снаружи и внутри;

Измерение тока и напряжения на выходе преобразователя или между гальваническим анодом (протектором) и трубой;

Измерение поляризационного или суммарного потенциала трубопровода в точке подключения установки;

Производство записи в журнале установки о результатах выполненной работы.

4.7.4 Текущий ремонт включает:

Измерение сопротивления изоляции питающих кабелей;

Одну или две из указанных ниже работ по ремонту: линий питания (до 20% протяженности), выпрямительного блока, блока управления, измерительного блока, корпуса установки и узлов крепления, дренажного кабеля (до 20% протяженности), контактного устройства контура анодного заземления, контура анодного заземления (в объеме менее 20%).

4.7.5 Капитальный ремонт включает:

Все работы по техническому осмотру;

Более двух ремонтных работ, перечисленных в пункте 4.7.4, либо ремонт в объеме более 20% - линии питания, дренажного кабеля, контура анодного заземления.

4.7.6 Внеплановый ремонт - вид ремонта, вызванный отказом в работе оборудования и не предусмотренный годовым планом ремонта.

Отказ в работе оборудования должен быть зафиксирован аварийным актом, в котором указываются причины аварии и подлежащие устранению дефекты.

Технический осмотр - 2 раза в месяц для катодных, 4 раза в месяц - для дренажных установок и 1 раз в 6 месяцев - для установок гальванической защиты (при отсутствии средств телемеханического контроля). При наличии средств телемеханического контроля сроки проведения технических осмотров устанавливаются руководством эксплуатационной организации с учетом данных о надежности устройств телемеханики;

Текущий ремонт - 1 раз в год;

Капитальный ремонт - в зависимости от условий эксплуатации (ориентировочно 1 раз в 5 лет).

4.7.8 С целью оперативного выполнения внеплановых ремонтов и сокращения перерывов в работе ЭХЗ в организациях, эксплуатирующих устройства ЭХЗ, целесообразно иметь резервный фонд преобразователей для катодной и дренажной защиты из расчета 1 резервный преобразователь на 10 действующих.

4.7.9 При проверке параметров электродренажной защиты измеряют дренажный ток, устанавливают отсутствие тока в цепи дренажа при перемене полярности трубопровода относительно рельсов, определяют порог срабатывания дренажа (при наличии реле в цепи дренажа или цепи управления), а также сопротивление в цепи электродренажа.

4.7.10 При проверке параметров работы катодной станции измеряют ток катодной защиты, напряжение на выходных клеммах катодной станции и потенциал трубопровода на контактном устройстве.

4.7.11 При проверке параметров установки гальванической защиты измеряют:

1) силу тока в цепи гальванический анод (ГА) - защищаемое сооружение;

2) разность потенциалов между ГА и трубой;

3) потенциал трубопровода в точке присоединения ГА при подключенном ГА.

4.7.12 Эффективность ЭХЗ проверяют не реже, чем 2 раза в год (с интервалом не менее 4 месяцев), а также при изменении параметров работы установок ЭХЗ и при изменениях коррозионных условий, связанных с:

Прокладкой новых подземных сооружений;

Изменением конфигурации газовой и рельсовой сети в зоне действия защиты;

Установкой ЭХЗ на смежных коммуникациях.

4.7.13 Контроль эффективности ЭХЗ подземных стальных трубопроводов производится по поляризационному потенциалу или при отсутствии возможности его измерений - по суммарному потенциалу трубопровода в точке подключения установки ЭХЗ и на границах создаваемых ею зон защиты. Для подключения к трубопроводу могут быть использованы контрольно-измерительные пункты, вводы в здания и другие элементы трубопровода, доступные для производства измерений. На трубопроводе до места присоединения не должно быть фланцевых или электроизолирующих соединений, если на них не установлены электрические перемычки.

4.7.14 Поляризационный потенциал стальных трубопроводов измеряют на стационарных КИПах, оборудованных медносульфатным электродом сравнения длительного действия с датчиком потенциала - вспомогательным электродом (ВЭ, рис.4.7.1), или на нестационарных КИПах с помощью переносного медносульфатного электрода сравнения с датчиком потенциала - вспомогательным электродом (ВЭ, рис.4.7.2).

Рис.4.7.1 Схема измерения поляризационного потенциала на стационарных КИПах

1 - трубопровод; 2 - контрольные проводники; 3 - прибор типа 43313.1; 4 - стационарный медносульфатный электрод сравнения; 5 - датчик потенциала.

Примечание:

Рис.4.7.2 Схема измерения поляризационного потенциала на нестационарных КИПах

1 - трубопровод; 2 - датчик потенциала; 3 - переносный медносульфатный электрод сравнения; 4 - прибор типа 43313.1

Примечание:

При использовании прибора типа ПКИ-02 проводник от трубопровода присоединяют к соответствующей клемме прибора.

4.7.15 Для измерений поляризационного потенциала на нестационарных КИПах используют ВЭ и переносной медносульфатный электрод сравнения, устанавливаемые на время измерений в специальном шурфе.

Подготовку шурфа и установку ВЭ производят в следующем порядке:

В намеченном пункте измерений (где имеется возможность подключения к трубопроводу) с помощью трассоискателя или по привязкам на плане трассы трубопровода определяют месторасположение трубопровода.

Над трубопроводом или в максимальном приближении к нему в месте отсутствия дорожного покрытия делают шурф глубиной 300-350 мм и диаметром 180-200 мм.

Датчик (ВЭ) и переносной электрод сравнения следует устанавливать на расстоянии не менее 3h от трубок гидравлических затворов, конденсатосборников и контрольных трубок (h - расстояние от поверхности земли до верхней образующей трубопровода).

Перед установкой в грунт ВЭ зачищают шкуркой шлифовальной (ГОСТ 6456-82) зернистостью 40 и меньше и насухо протирают. Предварительно из взятой со дна шурфа части грунта, контактирующего с ВЭ, должны быть удалены твердые включения размером более 3 мм. На выровненное дно шурфа насыпают слой грунта толщиной 30 мм. Затем укладывают ВЭ рабочей поверхностью вниз и засыпают его грунтом до отметки 60-80 мм от дна шурфа. Грунт над ВЭ утрамбовывают с усилием 3-4 кг на площадь ВЭ. Сверху устанавливают переносной электрод сравнения и засыпают грунтом. Переносной электрод сравнения перед установкой подготавливают по п.4.2.12. При наличии атмосферных осадков предусматривают меры против увлажнения грунта и попадания влаги в шурф.

4.7.16 Для измерения поляризационного потенциала используют приборы с прерывателем тока (например, типа 43313.1 или ПКИ-02).

Прерыватель тока обеспечивает попеременное подключение ВЭ к трубопроводу и к измерительной цепи.

Измерения на стационарных и нестационарных КИПах производят следующим образом. К соответствующим клеммам приборов (рис.4.7.1 и 4.7.2) присоединяют контрольные проводники от трубопровода, ВЭ и электрода сравнения; включают прибор. Через 10 мин после включения прибора измеряют потенциалы с записью результатов через каждые 10 с или при использовании прибора ПКИ-02 - с хранением в памяти прибора. Продолжительность измерений при отсутствии блуждающих токов не менее 10 мин. При наличии блуждающих токов продолжительность измерений принимается в соответствии с рекомендациями, изложенными в п.4.2.13.

Результаты измерений заносят в протокол (Приложение Ц).

Примечания:

1. Продолжительность измерений потенциала трубопровода в точке подключения установки защиты при ее техническом осмотре (см. п.4.7.3) может составлять 5 мин.

2. Если на стационарном КИПе ВЭ постоянно подключен к катодно поляризуемому трубопроводу, то измерения поляризационного потенциала начинаются непосредственно после подключения прибора.

4.7.17 Среднее значение поляризационного потенциала Е ср , В, вычисляют по формуле:

,

где E i - сумма измеренных n значений поляризационных потенциалов (В) за весь период измерений;

n - общее число измерений.

4.7.18 По окончании измерительных работ на нестационарном КИП и извлечения из шурфа электрода сравнения и ВЭ шурф засыпают грунтом. В целях обеспечения возможности повторных измерений в данной точке на плане прокладки трубопровода делают привязку пункта измерений.

4.7.19 Для определения эффективности ЭХЗ по суммарному потенциалу (включающему поляризационную и омическую составляющие) используют приборы типа ЭВ 2234, 43313.1, ПКИ-02. Переносные электроды сравнения устанавливают на поверхности земли на минимально возможном расстоянии (в плане) от трубопровода, в том числе на дне колодца. Режим измерений - по п.4.7.15.

4.7.20 Среднее значение суммарного потенциала U ср (В) вычисляют по формуле:

,

где U i - сумма значений суммарного потенциала, n - общее число отсчетов.

Результаты измерений заносятся в сводный журнал (Приложение Ц), а также могут фиксироваться на картах-схемах подземных трубопроводов.

4.7.21 При защите по смягченному критерию защищенности минимальный (по абсолютной величине) защитный поляризационный потенциал определяется по формуле:

Е мин = Е ст – 0,10 В,

где Е ст - стационарный потенциал вспомогательного электрода (датчика потенциала).

Поляризационный потенциал измеряют в соответствии с п.4.7.15.

Для определения Е ст датчика (ВЭ) датчик отключают от трубы и через 10 мин после отключения измеряют его потенциал Е . Если измеренный потенциал отрицательнее - 0,55 В, то это значение принимается за Е ст . Если измеренный потенциал по абсолютной величине равен или меньше 0,55 В, то принимается Е ст = -0,55 В. Значения Е ст (измеренное и принятое) заносятся в протокол (Приложение Ц).

4.7.22 При обнаружении неэффективной работы установок катодной или дренажной защиты (сокращены зоны их действия, потенциалы отличаются от допустимых защитных) необходимо произвести регулирование режима работы установок ЭХЗ.

Если потенциал трубопровода на участке подключения гальванического анода (ГА) окажется меньше (по абсолютному значению) проектного или минимального защитного потенциала, необходимо проверить исправность соединительного провода между ГА и трубопроводом, мест припайки его к трубопроводу и ГА. Если соединительный провод и места припайки его окажутся исправными, а потенциал по абсолютному значению не увеличивается, то делают шурф на глубину закопки ГА для его осмотра и проверки наличия вокруг него засыпки (активатора).

4.7.23 Сопротивление растеканию тока анодного заземления следует измерять во всех случаях, когда режим работы катодной станции резко меняется, но не реже 1 раза в год.

Сопротивление растеканию тока анодного заземления определяют как частное от деления напряжения на выходе катодной установки на ее выходной ток или с помощью прибора М-416 и стальных электродов по схеме на рис.4.7.3.

Рис.4.7.3 Измерение сопротивления растеканию тока анодного заземления

1 - анодные заземлители; 2 - контрольно-измерительный пункт; 3 - измерительный прибор;

4 - измерительный электрод; 5 - питающий электрод; 6 - дренажный провод.

При длине анодного заземлителя l а.з питающий электрод относят на расстояние b  3 l а.з , измерительный электрод - на расстояние a  2 l а.з

4.7.24 Сопротивление защитного заземления электроустановок измеряют не реже 1 раза в год. Схема измерения сопротивления растеканию тока защитного заземления приведена на рис.4.7.3. Измерения следует производить в наиболее сухое время года.

4.7.25 Исправность электроизолирующих соединений проверяют не реже 1 раза в год. Для этой цели используют специальные сертифицированные индикаторы качества электроизолирующих соединений.

При отсутствии таких индикаторов измеряют падение напряжения на электроизолирующем соединении или синхронно потенциалы трубы по обеим сторонам электроизолирующего соединения. Измерение проводят при помощи двух милливольтметров. При исправном электроизолирующем соединении синхронное измерение показывает скачок потенциала.

В случае применения изолирующих вставок ЗАО ";Экогаз"; (г.Владимир), имеющих металлическую муфту, изолированную с обеих сторон от трубопровода, проверить их исправность можно определением сопротивлений муфты относительно каждой из сторон трубопровода с помощью мегомметра напряжением до 500 В. Сопротивление должно быть не менее 200 кОм.

Результаты проверки оформляют протоколами согласно Приложению Ч.

4.7.26 Если на действующей установке ЭХЗ в течение года наблюдалось 6 и более отказов в работе преобразователя, последний подлежит замене. Для определения возможности дальнейшего использования преобразователя необходимо провести его испытание в объеме, предусмотренном требованиями предустановочного контроля.

4.7.27 В случае если за время эксплуатации установки ЭХЗ общее количество отказов в ее работе превысит 12, необходимо провести обследование технического состояния трубопровода по всей длине защитной зоны.

4.7.28 Организации, осуществляющие эксплуатацию устройств ЭХЗ, должны ежегодно составлять отчет об отказах в их работе.

4.7.29 Суммарная продолжительность перерывов в работе установок ЭХЗ не должна превышать 14 суток в течение года.

В тех случаях, когда в зоне действия вышедшей из строя установки ЭХЗ защитный потенциал трубопровода обеспечивается соседними установками ЭХЗ (перекрывание зон защиты), то срок устранения неисправности определяется руководством эксплуатационной организации.

4.8 ЭКСПЛУАТАЦИОННЫЙ КОНТРОЛЬ СОСТОЯНИЯ ИЗОЛЯЦИИ И ОПАСНОСТИ КОРРОЗИИ ТРУБОПРОВОДОВ

4.8.1 Во всех шурфах, отрываемых при ремонте, реконструкции и ликвидации дефектов изоляции или коррозионных повреждений трубопровода, должны определяться коррозионное состояние металла и качество изоляционного покрытия.

4.8.2 При обнаружении коррозионного повреждения на действующем трубопроводе проводится обследование с целью выявления причины коррозии и разработки противокоррозионных мероприятий.

Форма акта обследования утверждается руководителем хозяйства, эксплуатирующего данный трубопровод.

В акте должны быть отражены:

Год ввода в эксплуатацию данного участка трубопровода, диаметр трубопровода, толщина стенки, глубина укладки;

Тип и материал изоляционного покрытия;

Состояние покрытия (наличие повреждений);

Толщина, переходное сопротивление, адгезия покрытия;

Коррозионная агрессивность грунта;

Наличие опасного действия блуждающих токов;

Сведения о дате включения защиты и данные об имевших место отключениях ЭХЗ;

Данные измерения поляризационного потенциала трубы и потенциала трубы при выключенной защите;

Состояние наружной поверхности трубы вблизи места повреждения, наличие и характер продуктов коррозии, количество и размеры повреждений и их расположение по периметру трубы.

При обнаружении высокой коррозионной агрессивности грунта или опасного действия блуждающих токов при шурфовом обследовании следует дополнительно определить коррозионную агрессивность грунта и наличие опасного действия блуждающих токов на расстоянии около 50 м по обе стороны от места повреждения по трассе трубопровода.

В заключении должна быть указана причина коррозии и предложены противокоррозионные мероприятия.

Возможная форма акта приведена в Приложении Ш.

4.8.3 Определение опасного действия блуждающих токов (по пп.4.2.16-4.2.24) на участках трубопроводов, ранее не требовавших ЭХЗ, проводится 1 раз в 2 года, а также при каждом изменении коррозионных условий.

4.8.4 Оценка коррозионной агрессивности грунтов (по п.п.4.2.1-4.2.8) по трассе трубопроводов, ранее не требовавших ЭХЗ, проводится 1 раз в 5 лет, а также при каждом изменении коррозионных условий.

4.8.5 На участках трубопровода, где произошло коррозионное повреждение, после его ликвидации целесообразно предусмотреть установку индикаторов коррозии (п.4.3.11 и Приложение О).

ПРИЛОЖЕНИЯ

Приложение А

(Справочное)

ПЕРЕЧЕНЬ

нормативных документов, на которые имеются ссылки в настоящей инструкции

1. ГОСТ 9.602-89*. Единая система защиты от коррозии и старения. Сооружения подземные. Общие требования к защите от коррозии. С учетом Изм. № 1.

2. ГОСТ Р 51164-98. Трубопроводы стальные магистральные. Общие требования к защите от коррозии.

3. ГОСТ 16336-77*. Композиции полиэтилена для кабельной промышленности. Технические условия.

4. ГОСТ 16337-77* Е. Полиэтилен высокого давления. Технические условия.

5. ГОСТ 9812-74. Битумы нефтяные. Методы определения водонасыщаемости.

6. ГОСТ 11506-73*. Битумы нефтяные. Метод определения температуры размягчения по кольцу и шару.

7. ГОСТ 11501-78*. Битумы нефтяные. Метод определения глубины проникновения иглы.

8. ГОСТ 11505-75*. Битумы нефтяные. Метод определения растяжимости.

9. ГОСТ 15836-79. Мастика битумно-резиновая изоляционная.

10. ГОСТ 2678-94. Материалы рулонные кровельные и гидроизоляционные. Методы испытаний.

11. ГОСТ 19907-83. Ткани электроизоляционные из стеклянных крученых комплексных нитей.

12. ГОСТ 12.4.011-89. ССБТ. Средства защиты работающих. Общие требования и классификация.

13. ГОСТ 6709-72. Вода дистиллированная.

14. ГОСТ 19710-83Е. Этиленгликоль. Технические условия.

15. ГОСТ 4165-78. Медь сернокислая 5-водная. Технические условия.

16. ГОСТ 5180-84. Грунты. Методы лабораторного определения физических характеристик.

17. ГОСТ 6456-82. Шкурка шлифовальная бумажная. Технические условия.

18. Правила безопасности в газовом хозяйстве (ПБ 12-245-98). М.: НПО ОБТ, 1999 г.

19. СНиП 11-01-95. Инструкция о порядке разработки, согласования, утверждения и составе проектной документации на строительство предприятий, зданий и сооружений.

20. Правила устройства электроустановок (ПУЭ). 6-е издание. М.: ЗАО ";Энерго";, 2000 г.

21. Правила эксплуатации электроустановок потребителей (ПЭЭП) Главэнергонадзора России.

22. Правила техники безопасности при эксплуатации электроустановок потребителей (ПТБЭЭП) Главэнергонадзора России.

23. ТУ 1394-001-05111644-96. Трубы стальные с двухслойным покрытием из экструдированного полиэтилена.

24. ТУ 1390-003-01284695-00. Трубы стальные с наружным покрытием из экструдированного полиэтилена.

25. ТУ 1390-002-01284695-97. Трубы стальные с наружным покрытием из экструдированного полиэтилена.

26. ТУ 1390-002-01297858-96. Трубы стальные диаметром 89-530 мм с наружным антикоррозионным покрытием из экструдированного полиэтилена.

27. ТУ 1390-003-00154341-98. Трубы стальные электросварные и бесшовные с наружным двухслойным антикоррозионным покрытием на основе экструдированного полиэтилена.

28. ТУ 1390-005-01297858-98. Трубы стальные с наружным двухслойным защитным покрытием на основе экструдированного полиэтилена.

29. ТУ РБ 03289805.002-98. Трубы стальные диаметром 57-530 мм с наружным двухслойным покрытием на основе экструдированного полиэтилена.

30. ТУ 1394-002-47394390-99. Трубы стальные диаметром от 57 до 1220 мм с покрытием из экструдированного полиэтилена.

31. ТУ 1390-013-04001657-98. Трубы диаметром 57-530 мм с наружным комбинированным ленточно-полиэтиленовым покрытием.

32. ТУ 1390-014-05111644-98. Трубы диаметром 57-530 мм с наружным комбинированным ленточно-полиэтиленовым покрытием.

33. ТУ РБ 03289805.001-97. Трубы стальные диаметром 57-530 мм с наружным комбинированным ленточно-полиэтиленовым покрытием.

34. ТУ 4859-001-11775856-95. Трубы стальные с покрытием из полимерных липких лент.

35. ТУ 2245-004-46541379-97. Лента термоусаживающаяся двухслойная радиационномодифицированная ";ДОНРАД";.

36. ТУ 2245-002-31673075-97. Лента термоусаживающаяся двухслойная радиационномодифицированная ";ДРЛ";.

37. ТУ 2245-001-44271562-97. Лента защитная термоусаживающаяся ";Терма";.

38. ТУ РБ 03230835-005-98. Ленты термоусаживаемые двухслойные.

39. ТУ 8390-002-46353927-99. Полотно нетканое термоскрепленое техническое.

40. ТУ 8390-007-05283280-96. Полотно нетканое клееное для технических целей.

41. ТУ 2245-003-1297859-99. Лента полиэтиленовая для защиты нефте-газопроводов ";ПОЛИЛЕН";.

42. ТУ 2245-004-1297859-99. Обертка полиэтиленовая для защиты нефте-газопроводов ";ПОЛИЛЕН - ОБ";.

43. ТУ 38.105436-77 с Изм. № 4. Полотно резиновое гидроизоляционное.

44. ТУ 2513-001-05111644-96. Мастика битумно-полимерная для изоляционных покрытий подземных трубопроводов.

45. ТУ 2245-001-48312016-01. Лента полимерно-битумная на основе мастики ";Транскор"; - ЛИТКОР.

46. ТУ 2245-024-16802026-00. Лента ЛИАМ-М (модифицированная) для изоляции подземных газо- нефтепроводов.

47. ТУ 5775-002-32989231-99. Мастика битумно-полимерная изоляционная ";Транскор";.

48. ТУ 204 РСФСР 1057-80. Покрытие защитное битумно-атактическое от подземной коррозии стальных газовых и водопроводных сетей и емкостей хранения сжиженного газа.

Рабочая программа

7 Владимир 2005 г. 1 ПРЕДИСЛОВИЕ Целью дисциплины "Автоматизация систем... обнаружения скрытых (подземных ) утечек наружных... изношенных газопроводов». 9.13. Инструкция по защите городских трубопроводов от коррозии . РД 153 -39 .4-091 -01 9.14. ГОСТ 9.602 ...

  • Свод правил по проектированию и строительству проектирование и строительство газопроводов из металлических труб designing and construction of gas pipelines from metal pipes предисловие

    Документ

    05-27 ПРЕДИСЛОВИЕ 1 ... защиты подземных трубопроводов от коррозии ТУ... РД 153 -39 .4-091 -01 Инструкция по защите городских подземных газопроводов РД 12-411-01 Инструкция по подземных стальных газопроводов РД ...

  • Свод правил по проектированию и строительству проектирование и строительство газопроводов из металлических труб предисловие

    Документ

    27 ПРЕДИСЛОВИЕ 1 ... защиты подземных трубопроводов от коррозии ... 153 -39 .4-091 -01 Инструкция по защите городских подземных газопроводов S M12291 1200025080РД 12-411-01 Инструкция по диагностированию технического состояния подземных стальных азопроводов S РД ...

  • Саморегулируемая организация некоммерческое партнерство «объединение организаций осуществляющих подготовку проектной документации энергетических объектов сетей и подстанций «энергопроект»

    Документ

    Энергетики по состоянию на 01 .01 .2012 г. Содержание Предисловие Приложение... -98* Трубопроводы стальные магистральные. Общие требования к защите от коррозии . 23 ... РД 34.03.211) Инструкция по технике безопасности при ведении крепежных работ в подземных ...