Все о тюнинге авто

Схема защиты электродвигателя от перегрева. Защита электродвигателя. Виды, схемы, принцип действия защиты электродвигателя. Отличительные черты каждого из семейств мотор-протекторов Sensata

Наверно все знают, что различные устройства работают на основе электрических двигателей. Но для чего нужна защита электродвигателей осознает лишь малая часть пользователей. Оказывается они могут сломаться в результате различных непредвиденных ситуаций.

Чтобы избежать проблем с высокими затратами на ремонт, неприятных простоев и дополнительных материальных потерь используются качественные защитные устройства. Далее разберемся в их устройстве и возможностях.

Как создается защита для электродвигателя?

Постепенно рассмотрим основные устройства защиты электродвигателей и особенности их эксплуатации. Но сейчас расскажем об трех уровнях защиты:

  • Внешняя версия защиты для предохранения от короткого замыкания. Обычно относится к разным видам либо представлена в виде реле. Они обладают официальным статусом и обязательны к установке согласно нормам безопасности на территории РФ.
  • Внешняя версия защиты электродвигателей от перегрузки помогает предотвратить опасные повреждения либо критические сбои в процессе работы.
  • Встроенный тип защиты спасет в случае заметного перегрева. И это защитит от критических повреждений либо сбоев в процессе эксплуатации. В этом случае обязательны выключатели внешнего типа иногда применяется реле для перезагрузки.


Из-за чего отказывает электродвигатель?

В процессе эксплуатации иногда появляются непредвиденные ситуации, останавливающие работу двигателя. Из-за этого рекомендуется заранее обеспечить надежную защиту электродвигателя.

Можете ознакомиться с фото защиты электродвигателя различного типа чтобы иметь представление о том, как она выглядит.

Рассмотрим случаи отказа электродвигателей в которых с помощью защиты можно избежать серьезных повреждений:

  • Недостаточный уровень электрического снабжения;
  • Высокий уровень подачи напряжения;
  • Быстрое изменение частоты подачи тока;
  • Неправильный монтаж электродвигателя либо хранения его основных элементов;
  • Увеличение температуры и превышение допустимого значения;
  • Недостаточная подача охлаждения;
  • Повышенный уровень температуры окружающей среды;
  • Пониженный уровень атмосферного давления, если эксплуатация двигателя происходит на увеличенной высоте на основе уровня моря;
  • Увеличенная температура рабочей жидкости;
  • Недопустимая вязкость рабочей жидкости;
  • Двигатель часто выключается и включается;
  • Блокирование работы ротора;
  • Неожиданный обрыв фазы.

Чтобы защита электродвигателей от перегрузки справилась с перечисленными проблемами и смогла защитить основные элементы устройства необходимо использовать вариант на основе автоматического отключения.

Часто для этого используется плавкая версия предохранителя, поскольку она отличается простотой и способна выполнить много функций:

Версия на основе плавкого предохранительного выключателя представлена аварийным выключателем и плавким предохранителем, соединенных на основе общего корпуса. Выключатель позволяет размыкать либо замыкать сеть с помощью механического способа, а плавкий предохранитель создает качественную защиту электродвигателя на основе воздействия электрического тока. Однако выключателем пользуются в основном для процесса сервисного обслуживания, когда необходимо остановить передачу тока.

Плавкие версии предохранителей на основе быстрого срабатывания считаются отличными защитниками от коротких замыканий. Но непродолжительные перегрузки могут привести к поломке предохранителей этого вида. Из-за этого рекомендуется использовать их на основе воздействия незначительного переходного напряжения.

Плавкие предохранители на основе задержки срабатывания способны защитить от перегрузки либо различных коротких замыканий. Обычно они способны выдержать 5-краткое увеличение напряжения в течение 10-15 секунд.

Важно: Автоматические версии выключателей отличаются по уровню тока для срабатывания. Из-за этого лучше использовать выключатель способный выдержать максимальный ток в процессе короткого замыкания, появляющегося на основе данной системы.

Тепловое реле

В различных устройствах используется тепловое реле для защиты двигателя от перегрузок под воздействием тока либо перегрева рабочих элементов. Оно создается с помощью металлических пластин, обладающих различным коэффициентом расширения под воздействием тепла. Обычно его предлагают в связке с магнитными пускателями и автоматической защитой.

Автоматическая защита двигателя

Автоматы для защиты электродвигателей помогают обезопасить обмотку от появления короткого замыкания, защищают от нагрузки либо обрыва любой из фаз. Их всегда используют в качестве первого звена защиты в сети питания мотора. Потом используется магнитный пускатель, если необходимо он дополняется тепловым реле.

Каковы критерии выбора, подходящего автомата:

  • Необходимо учитывать величину рабочего тока электродвигателя;
  • Количество, использующихся обмоток;
  • Возможность автомата справляться с током в результате короткого замыкания. Обычные версии работают на уровне до 6 кА, а лучшие до 50 кА. Стоит учитывать и скорость срабатывания у селективных менее 1 секунды, нормальных меньше 0,1 секунды, быстродействующих около 0,005 секунды;
  • Размеры, поскольку большая часть автоматов можно подключать с помощью шины на основе фиксированного типа;
  • Вид расцепления цепи – обычно применяется тепловой либо электромагнитный способ.


Универсальные блоки защиты

Различные универсальные блоки защиты электродвигателей помогают уберечь двигатель с помощью отключения от напряжения либо блокированием возможности запуска.

Они срабатывают в таких случаях:

  • Проблемы с напряжением, характеризующиеся скачками в сети, обрывами фаз, нарушением чередования либо слипания фаз, перекосом фазного или линейного напряжения;
  • Механической перегруженности;
  • Отсутствие крутящего момента для вала ЭД;
  • Опасных эксплуатационной характеристике изоляции корпуса;
  • Если произошло замыкание на землю.

Хотя защита от понижения напряжения, может быть, организована и другими способами мы рассмотрели основные из них. Теперь у вас есть представление о том зачем необходимо защищать электродвигатель, и как это осуществляется с помощью различных способов.

Фото защиты электродвигателя

Термисторы PTC-типа

Термистор относится к термочувствительным защитным устройства встраиваемой тепловой защите электродвигателя. Располагаются в специально предусмотренных для этой цели гнездах в лобовых частях электродвигателя (защита от заклинивания ротора) или в обмотках электродвигателя (защита от теплового перегруза).
Термистор - полупроводниковый резистор, изменяющие свое сопротивление в зависимости от температуры.
Термисторы в основном делятся на два класса:
PTC-типа - полупроводниковые резисторы с положительным температурным коэффициентом сопротивления;
NTC-типа - полупроводниковые резисторы с отрицательным температурным коэффициентом сопротивления.
Для защиты электродвигателей используются в основном PTC-термисторы (позисторы Positive Temperature Coefficient), обладающие свойством резко увеличивать свое сопротивление, когда достигнута некоторая характеристическая температура (см рис. 1). Применительно к двигателю это максимально допустимая температура нагрева обмоток статора для данного класса изоляции. Три (для двухобмоточных двигателей - шесть) PTC-термистора соединены последовательно и подключены к входу электронного блока защиты. Блок настроен таким образом, что при превышении суммарного сопротивления цепочки срабатывает контакт выходного реле, управляющий расцепителем автомата или катушкой магнитного пускателя. Термисторная защита предпочтительней в тех случаях, когда по току невозможно определить с достаточной точностью температуру двигателя. Это касается прежде всего двигателей с продолжительным периодом запуска, частыми операциями включения и отключения (повторно-кратковременным режимом) или двигателей с регулируемым числом оборотов (при помощи преобразователей частоты). Термисторная защита эффективна также при сильном загрязнении двигателей или выходе из строя системы принудительного охлаждения.

Недостатком данного вида защиты является то, что с датчиками выпускаются далеко не все типы двигателей. Это особенно касается двигателей отечественного производства. Датчики могут устанавливаться только в условиях стационарных мастерских. Температурная характеристика термистора достаточно инерционна и сильно зависит от температуры окружающей среды и от условий эксплуатации самого двигателя. Они требуют наличия специального электронного блока: термисторного устройства защиты двигателей, теплового или электронного реле перегрузки, в которых находятся блоки настройки и регулировки, а также выходные электромагнитные реле, служащие для отключения катушки пускателя или электромагнитного расцепителя.

Характеристики термистора PTC-типа по DIN44081/44082

Здравствуйте, уважаемые читатели сайта . В предыдущей статье мы с Вами рассмотрели принципиальные схемы включения магнитного пускателя, обеспечивающие электродвигателя.

Продолжаем знакомиться с магнитным пускателем и сегодня рассмотрим типовые схемы подключения электротеплового реле типа РТИ , которое предназначено для защиты от перегрева обмоток электродвигателя при токовых перегрузках.

1. Устройство и работа электротеплового реле.

Электротепловое реле работает в комплекте с магнитным пускателем. Своими медными штыревыми контактами реле подключается к выходным силовым контактам пускателя. Электродвигатель, соответственно, подключают к выходным контактам электротеплового реле.

Внутри теплового реле находятся три биметаллические пластины, каждая из которых сварена из двух металлов, имеющих различный коэффициент теплового расширения. Пластины через общее «коромысло» взаимодействуют с механизмом подвижной системы, которая связана с дополнительными контактами, участвующими в схеме защиты электродвигателя:

1. Нормально-замкнутый NC (95 – 96) используют в схемах управления пускателем;
2. Нормально-разомкнутый NO (97 – 98) применяют в схемах сигнализации.

Принцип действия теплового реле основан на деформации биметаллической пластины при ее нагреве проходящим током.

Под действием протекающего тока биметаллическая пластина нагревается и прогибается в сторону металла, имеющего меньший коэффициент теплового расширения. Чем больший ток будет протекать через пластину, тем сильнее она будет греться и прогибаться, тем быстрее сработает защита и отключит нагрузку.

Допустим, что электродвигатель подключен через тепловое реле и работает в нормальном режиме. В первый момент времени работы электродвигателя через пластины течет номинальный ток нагрузки и они нагреваются до рабочей температуры, которая не вызывает их изгиб.

По какой-то причине ток нагрузки электродвигателя стал увеличиваться и через пластины потек ток выше номинального. Пластины начнут сильнее греться и прогибаться, что приведет в движение подвижную систему и она, воздействуя на дополнительные контакты реле (95 – 96 ), обесточит магнитный пускатель. По мере остывания пластины вернутся в исходное положение и контакты реле (95 – 96 ) замкнутся. Магнитный пускатель опять будет готов к запуску электродвигателя.

В зависимости от величины протекающего тока в реле предусмотрена уставка срабатывания по току, влияющая на силу изгиба пластины и регулирующаяся поворотным регулятором, расположенным на панели управления реле.

Помимо поворотного регулятора на панели управления расположена кнопка «TEST », предназначенная для имитации срабатывания защиты реле и проверки его работоспособности до включения в схему.

«Индикатор » информирует о текущем состоянии реле.

Кнопкой «STOP » обесточивается магнитный пускатель, но как в случае с кнопкой «TEST», контакты (97 – 98 ) не замыкаются, а остаются в разомкнутом состоянии. И когда Вы будете задействовать эти контакты в схеме сигнализации, то учитывайте этот момент.

Электротепловое реле может работать в ручном или автоматическом режиме (по умолчанию стоит автоматический режим).

Для перевода в ручной режим необходимо повернуть поворотную кнопку «RESET » против часовой стрелки, при этом кнопка слегка приподнимается.

Предположим, что сработало реле и своими контактами обесточило пускатель.
При работе в автоматическом режиме после остывания биметаллических пластин контакты (95 — 96 ) и (97 — 98 ) автоматически перейдут в исходное положение, тогда как в ручном режиме перевод контактов в исходное положение осуществляется нажатием кнопки «RESET ».

Кроме защиты эл. двигателя от перегрузок по току, реле обеспечивает защиту и в случае обрыва питающей фазы. Например. При обрыве одной из фаз, электродвигатель, работая на оставшихся двух фазах, станет потреблять больше тока, отчего биметаллические пластины нагреются и реле сработает.

Однако электротепловое реле не способно защитить двигатель от токов короткого замыкания и само нуждается в защите от подобных токов. Поэтому при установке тепловых реле необходимо устанавливать в цепь питания электродвигателя автоматические выключатели, защищающие их от токов короткого замыкания.

При выборе реле обращают внимание на номинальный ток нагрузки электродвигателя, который будет защищать реле. В инструкции по эксплуатации, идущей в коробке, есть таблица, по которой выбирается тепловое реле для конкретной нагрузки:

Например.
Реле РТИ-1302 имеет предел регулировки тока уставки от 0,16 до 0,25 Ампер. Значит, нагрузку для реле следует выбирать с номинальным током около 0,2 А или 200 mA.

2. Принципиальные схемы включения электротеплового реле.

В схеме с тепловым реле используют нормально-замкнутый контакт реле КК1.1 в цепи управления пускателем, и три силовых контакта КК1 , через которые подается питание на электродвигатель.

При включении автоматического выключателя QF1 фаза «А », питающая цепи управления, через кнопку SB1 «Стоп» поступает на контакт №3 кнопки SB2 «Пуск», вспомогательный контакт 13НО пускателя КМ1 , и остается дежурить на этих контактах. Схема готова к работе.

При нажатии на кнопку SB2 фаза через нормально-замкнутый контакт КК1.1 поступает на катушку магнитного пускателя КМ1 , пускатель срабатывает и его все нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.

При замыкании контакта КМ1.1 пускатель встает на самоподхват. При замыкании силовых контактов КМ1 фазы «А », «В », «С » через контакты теплового реле КК1 поступают на обмотки электродвигателя и двигатель начинает вращение.

При увеличении тока нагрузки через силовые контакты термореле КК1 , реле сработает, контакт КК1.1 разомкнется и пускатель КМ1 обесточится.

Если возникнет необходимость в простой остановке двигателя, то достаточно будет нажать на кнопку «Стоп ». Контакты кнопки разорвутся, фаза прервется и пускатель обесточится.

На фотографиях ниже показана часть монтажной схемы цепей управления:

Следующая принципиальная схема аналогична первой и отличается лишь тем, что нормально-замкнутый контакт термореле (95 – 96 ) разрывает ноль пускателя. Именно эта схема получила наибольшее распространение из-за удобства и экономичности монтажа: ноль сразу заводят на контакт термореле, а со второго контакта реле бросают перемычку на катушку пускателя.

При срабатывании термореле контакт КК1.1 размыкается, «ноль» разрывается и пускатель обесточивается.

И в заключении рассмотрим подключение электротеплового реле в реверсивной схеме управления пускателем.

От типовой схемы она, как и схема с одним пускателем, отличается лишь наличием нормально-замкнутого контакта реле КК1.1 в цепи управления, и тремя силовыми контактами КК1 , через которые запитывается электродвигатель.

При срабатывании защиты контакты КК1.1 разрываются и отключают «ноль». Работающий пускатель обесточивается и двигатель останавливается. При возникновении необходимости в простой остановке двигателя достаточно нажать на кнопку «Стоп ».

Вот и подошел к логическому завершению рассказ о магнитном пускателе.
Понятно, что только одних теоретических знаний мало. Но если Вы будете практиковаться, то сможете собрать любую схему с применением магнитного пускателя.

И уже по сложившейся традиции небольшой видеоролик о применении электротеплового реле.

Практически нет в эксплуатации техники, где не использовался бы электрический . Этот вид электромеханических приводов самой разной конфигурации применяется повсеместно. С конструктивной точки зрения, электромотор – оборудование несложное, вполне понятное и простое. Однако работа электродвигателя сопровождается значительными нагрузками разного характера. Именно поэтому на практике применяются реле защиты двигателя, функциональность которых также носит разносторонний характер. Степень эффективности, на которую рассчитана защита электрического двигателя, как правило, определяется схемными решениями внедрения реле и датчиков контроля.

Применительно к малозначимым сервисным моторам, для автоматического отключения используется мгновенное реле с обратно-зависимым временем реагирования на фазные перегрузки по току.


Схема защиты двигателя от перегрузки по току и замыканий на землю: 1, 2, 3 — трансформаторы тока; 4, 5, 6 — устройства отсечки по току; Ф1, Ф2, Ф3 — линейные фазы; 7 — земля

Реле чередования фаз обычно настраиваются на 3,5-4 кратное превышение рабочего тока двигателя, с учётом достаточной задержки по времени, чтобы исключить срабатывание в моменты запуска мотора.

Для сервисных двигателей высокой значимости реле тока с обратно-зависимым временем срабатывания, как правило, не используются. Причиной тому является задействованный автоматический выключатель непосредственно в цепи двигателя.

Перегрев статорных обмоток

Критичное состояние, в основном обусловленное непрерывной перегрузкой, торможением ротора или дисбалансом тока статора. Для полной защиты, в данном случае, трёхфазный двигатель необходимо оснастить элементами контроля перегрузки на каждой фазе.

Здесь для защиты малозначимых сервисных двигателей обычно используется защита от перегрузки либо прямое срабатывание на отключение от источника питания в случае перегрузки.

Если номинальная мощность двигателя превышает 1000 кВт, вместо одиночного реле с резистивным датчиком температуры, как правило, используется реле обратно-зависимого времени срабатывания по току.


Термисторы предельной температуры для статора двигателя: 1 — залуженная часть проводника 7-10 мм; 2 — размер длины 510 — 530 мм; 3 — длина термистора 12 мм; 4 — диаметр термистора 3 мм; Дуговые соединения длиной 200 мм

Для значимых моторов автоматическое отключение применяют по желанию. В качестве главного защитника от перегрева статорных обмоток используется тепловое реле.

Фактор перегрева ротора (фазного)

Защита от перегрева ротора часто встречается в двигателях с раневым (фазным) ротором. Увеличение тока ротора отражается на токе статора, что требует включения защиты от превышения тока статора.

Настройка реле защиты статора по току в целом составляет величину, равную току полной нагрузки, увеличенному в 1,6 раза. Этого значения вполне достаточно, чтобы определить перегрев фазного ротора и включить блокировку.

Защита от пониженного напряжения

Электродвигатель потребляет чрезмерный ток при работе под напряжением ниже установленной нормы. Поэтому защита от недостатка напряжения или перенапряжения должна обеспечиваться датчиками перегрузки или чувствительными температурными элементами.

Чтобы избежать перегрева, двигатель необходимо обесточить на 40-50 минут даже в случае небольших перегрузок, превышающих 10 — 15% норматива.


Классический вариант термального контроля статорной обмотки: Т — датчики температуры, встроенные непосредственно среди обмоточных проводников

Защитное реле следует использовать для контроля нагрева ротора двигателя из-за токов обратной последовательности, возникающих в статоре по причине дисбаланса напряжения питания.

Дисбаланс и пофазный сбой

Несбалансированное трехфазное питание также вызывает протекание тока обратной последовательности в обмотках статора двигателя. Подобное состояние вызывает перегрев обмотки статора и ротора (фазного).

Несбалансированное состояние, кратковременно передаваемое двигателю, необходимо контролировать и поддерживать на таком уровне, чтобы избежать появления непрерывного состояния дисбаланса.

Предпочтительно реле контроля межфазного замыкания питать от положительной фазы, а для защиты от замыканий на землю использовать дифференциальное реле мгновенной отсечки, подключенное в цепь контура трансформатора тока.

Непредусмотренный реверс фазы

В некоторых случаях реверс фазы видится опасным явлением для мотора. Например, такое состояние может негативно отражаться на работе лифтового оборудования, кранов, подъемников, некоторых видов общественного транспорта.

Здесь обязательно следует предусматривать защиту от реверса фаз – специализированное реле. Работа реле реверса фазы основана на электромагнитном принципе. Прибор содержит дисковый двигатель, приводимый в движение магнитной системой.


Плата и схема устройства реверса фазы: 1 — автоматический выключатель или плавкая вставка; 2 — защита от перегрузки; 3 — фаза текущая; 4 — реверс фазы; 5 — электродвигатель

Если отмечается правильная последовательность фаз, диск формирует крутящий момент в положительном направлении. Следовательно, вспомогательный контакт удерживается в закрытом положении.

Когда фиксируется реверс фазы, крутящий момент диска изменяется на противоположное направление. Следовательно, вспомогательный контакт переключается в открытое положение.

Эта система коммутации используется для защиты, в частности – для управления автоматическим выключателем.

Традиционная защита асинхронных двигателей

Защиты трехфазных асинхронных двигателей небольшой мощности показана на рисунке ниже. Магнитный контактный пускатель содержит группу кнопок пуска и останова, связанных соответствующими вспомогательными контактами, защитными устройствами перегрузки или недогрузки.

Стартовая кнопка (КН1) представляет собой обычный прямой контактный переключатель, который обычно удерживается в нормально открытом состоянии усилием пружины. В свою очередь кнопка останова (КН2) удерживается в состоянии нормально закрытом также посредством пружины.

Стоит нажать кнопку пуска (замкнуть линию), рабочая катушка контактора получает питание через контакты (ВК) реле перегрузки (Р1-Р3). Образованное магнитное поле катушки притягивает металлический сердечник контактора.

В результате замыкаются три главных контакта (К1-К3) магнитного пускателя, через которые электродвигатель (М) соединяется с трёхфазным источником питания.


Схема пуска, останова и аварийной блокировки: П1, П2, П3 — плавкие предохранители; Р1, Р2, Р3 — токовые реле; ВК — контакты блокировки; КП — катушка пускателя; К1, К2, К3 — контакторы пускателя; КН1 — кнопка пуска; КН2 — кнопка останова; М- мотор

Пока кнопка «пуск» (КН1) замкнута, цепь питания проходит через контакты кнопки «стоп» (КН2) и катушку магнитного пускателя (КП). Между тем, цепь питания катушки индуктивности теперь уже поддерживается иной схемой.

Поддержка осуществляется вспомогательными контактами (ВК) реле с токовым управлением (Р1-Р3), поэтому возврат кнопки «пуск» в исходное положение ситуацию не изменит. Контактор останется замкнутым, а двигатель в работе.

Как работает функционал защиты

Обычно двигатели мощностью до 20 кВт рассматриваются как маломощные аппараты. Максимум защиты таких моторов обеспечивается:

  • предохранителями с высокой отключающей способностью,
  • биметаллическими реле и
  • реле напряжения.

Все эти элементы защиты собраны, как правило, в структуре магнитного пускателя.

Чаще всего выгорание линейных предохранителей защиты двигателя отмечается на одной фазе. Этот обрыв может оставаться не обнаруженным, даже если двигатель защищён обычным биметаллическим реле.


Структура предохранителя: 1 — торцевая крышка; 2 — кремнезём; 3 — фарфоровый корпус; 4 — выступ крепежа; 5 — предохраняющий элемент; 6 — оловянный сплав; 7 — конструкция управления дугой

Обнаружение обрыва фазы зачастую не дают и реле напряжения, подключенные на каждой линии. Несмотря на обрыв одной фазы, схемой обмоток электродвигателя поддерживается значительная обратная ЭДС на клемме фазы, находящейся в обрыве.

Поэтому уровень напряжения на реле остаётся достаточно высоким, что не приводит к срабатыванию. Однако сложности обнаружения подобных дефектов вполне преодолимы.

Достаточно использовать дополнительный набор из трех реле, управляемых по току. Подключение наглядно демонстрирует схема защиты двигателя, показанная выше.

Защитные функции токовых реле

Управляемые током реле — устройства простые, но обладающие эффектом мгновенной отсечки. Конструктивно прибор состоит из следующих деталей:

  • катушка тока;
  • один или несколько нормально разомкнутых контактов.

Механизм движения контактов управляются ЭДС катушки тока. Традиционно токовые реле подключаются на каждой фазе последовательно с плавкими защитными предохранителями.

Когда срабатывает магнитный пускатель, электродвигатель запускается, ток питания течёт через катушку. Магнитодвижущая сила катушки (ЭДС) воздействует на механику и замыкает контакты реле. Цепь питания мотора замыкается.


Блокиратор токовой перегрузки: 1 — электрические коннекторы; 2 — индикатор отключения; 3 — тест; 4 — клеммы для проводников двигателя; 5 — сигнальный контакт; 6 — кнопка сброса; 7 — селектор «авто» или «ручной»; 8 — кнопка останова; 9 — шкала установки тока; 10 — механическая защёлка

Если, вдруг, случится обрыв фазы, ток катушки индуктивности снижается, контакты соответствующего реле переключаются в нормально-открытое положение.

Учитывая, что контакты всех трех защитных реле соединяются последовательно, цепь питания мотора разомкнётся.

Защитные функции тепловых реле

Все классические конструкции моторов предполагают использование опорных и упорных подшипников. В зависимости от мощности электродвигателей, может устанавливаться тот или иной вид подшипников, либо оба вида вместе.

Неисправность подшипника любого вида нередко приводит к полной остановке вращения ротора. Внезапное , в свою очередь, провоцирует резкий подъём тока статорной обмотки двигателя и последующий перегрев.

Здесь токовая защита не способна удовлетворительно реагировать на событие. Как правило, этот вид защиты настроен с учётом стартового тока двигателя и короткой временной составляющей. Проблема клина может быть решена только путём внедрения защиты от тепловой перегрузки.

Также защиту в данном случае допустимо обеспечить индивидуальным модулем, настроенным на определенное время срабатывания по току. В случае применения тепловой отсечки, разумно ставить датчик температуры, встроенный непосредственно в подшипниковый узел.

Теоретический минимум по защите электродвигателей

Асинхронный однофазный двигатель

В рубрике «Общее» на сайте «Насосы и принадлежности» рассмотрим эксплуатацию электрических двигателей. В процессе эксплуатации электродвигателей могут возникать различные неисправности. Мы будем рассматривать электродвигатели, которые эксплуатируются с насосным оборудованием. Очень важно заранее предусмотреть все возможные сбои и как можно надежнее защитить оборудование от сбоев. Перечень причин, которые могут привести к отказу оборудования, включает: качество электроснабжения, качество монтажа, условия эксплуатации. Качество электроснабжения: повышенное или пониженное напряжение, скачки напряжения, обрыв фазы.

Качество монтажа: неправильный или некачественный монтаж.

Условия эксплуатации: недостаточное охлаждение двигателя (обдув), высокая температура окружающей среды, пониженное атмосферное давление (работа на большой высоте над уровнем моря), высокая температура перекачиваемой жидкости, слишком большая вязкость перекачиваемой жидкости, частые включения/выключения электродвигателя, заклинивание ротора.

Число пусков в час

Очень часто в технических характеристиках к насосному оборудованию присутствует такой параметр, как количество пусков в час. Необходимость контролировать этот параметр заключается в том, что каждый раз, когда производится запуск электродвигателя, происходит пяти-семи кратное превышение номинального рабочего тока. Высокие пусковые токи нагревают обмотки статора двигателя. Если электродвигатель не успевает остывать из-за частых пусков, то это может привести к выходу его из строя или сокращению срока службы изоляции (пробою изоляции обмоток). Количество пусков, которое может происходить в течение часа, рассчитывает и определяет завод изготовитель. Эта информация размещается в технических характеристиках или в инструкции по эксплуатации.

Защита электродвигателей

Чтобы избежать непредвиденных сбоев и дорогостоящего ремонта электродвигателя в процессе эксплуатации, в первую очередь, необходимо обеспечить двигатель защитными устройствами. Защита электродвигателя имеет три уровня:

  • Внешняя защита от короткого замыкания. Самый простой способ – это установка внешних предохранителей.
  • Внешняя защита от перегрузок. Это защита по току.
  • Встроенная защита. Это защита от перегрева обмоток с помощью тепловых автоматических выключателей или датчиков PTС . Для встроенной тепловой защиты всегда требуется исполнительное внешнее устройство – пускатель для тепловых автоматических выключателей и реле контроля температуры обмотки двигателя, (как пример, TER-7 производства ETI Словения) для датчиков PTС.

Для защиты оборудования от перегрузок и короткого замыкания необходимо определить, какое устройство защиты будет использоваться. Оно должно автоматически отключать питание от сети. Плавкий предохранитель является простейшим устройством, выполняющим две функции. Как правило, плавкие предохранители соединяются между собой при помощи аварийного выключателя, который может отключить двигатель от сети питания.

Автоматический токовый выключатель

Автоматический токовый выключатель является устройством защиты от перегрузок по току. Он автоматически размыкает цепь при заданном значении перегрузки по току или возникновении короткого замыкания. Если токовый выключатель применяется в диапазоне своих рабочих параметров, размыкание и замыкание не наносит ему никакого вреда. Сразу же после отключения по перегрузке можно легко возобновить работу автоматического выключателя. Автоматические выключатели бывают двух видов: тепловые и магнитные.

Тепловые автоматические выключатели – это надёжный и экономичный тип защитных устройств, которые используются для электродвигателей. Конструктивно автоматический выключатель состоит из электромагнитного расцепителя, теплового расцепителя и дугогасящей камеры. Они могут выдерживать большие перегрузки по току, которые возникают во время запуска электродвигателя, и защищают электродвигатель при заклинивании ротора. Тепловые автоматические выключатели нечувствительны к напряжению, но чувствительны к температуре.

Магнитные автоматические выключатели являются точными, надёжными и экономичными. Магнитный пускатель – это комбинированный электрический прибор. В состав магнитного пускателя входят: контактор переменного тока, тепловое реле и кнопки включения и выключения. Магнитный автоматический выключатель нечувствителен к изменению температуры окружающей среды: она не влияет на предел его срабатывания, но чувствителен к изменению напряжения. Автоматические выключатели подбираются по номинальному току, потребляемому электродвигателем.

Реле перегрузки:

  • При пуске электродвигателя позволяют выдерживать временные перегрузки без разрыва цепи.
  • Размыкают цепь электродвигателя, если ток превышает предельно допустимое значение и возникает угроза повреждения электродвигателя.
  • Устанавливаются в исходное положение автоматически или вручную после устранения перегрузки.

Обозначение класса срабатывания

Как правило, реле перегрузки реагируют на условия перегрузки в соответствии с характеристикой срабатывания. Деление изделий на классы определяет, за какой период времени реле размыкает цепь при перегрузке. Наиболее часто встречающиеся классы: 10, 20 и 30. Цифры определяют время, необходимое реле для отключения. Реле перегрузки класса 10 срабатывает в течение 10 секунд и менее, при 600% номинального тока, реле класса 20 срабатывает в течение 20 секунд и менее, а реле класса 30 – в течение 30 секунд и менее.

Устройства внешней защиты

Устройства внешней защиты: плавкие предохранители, автоматические выключатели, – реагируют на превышение тока, который потребляет электродвигатель в процессе эксплуатации. Они предназначены для отключения электродвигателя, если ток превышает номинальное значение. Внешнее устройство защиты предохраняет двигатель от выхода из строя в случае блокировки ротора.

При перегреве обмоток электродвигателя этот вид защиты не работает. Примеры:

  • Когда в крышку вентилятора двигателя попадают посторонние предметы, или двигатель смонтирован крышкой вентилятора очень близко от стенки (недостаточно охлаждение), то происходит медленный нагрев до опасной температуры;
  • Очень высокая температура окружающей среды 40°С и выше;
  • Когда внешняя защита двигателя выставлена на слишком высокий ток срабатывания или настроена неправильно;
  • Когда происходят частые включения/выключения электродвигателя, то за короткий период времени пусковые токи могут перегреть обмотки двигателя.

Устройства внутренней защиты

Устройства внутренней защиты обмоток, такие как автоматические выключатели и терморезисторы, намного эффективнее, чем устройства внешней защиты. Это объясняется тем, что они встраиваются в обмотки статора и измеряют температуру непосредственно в обмотках. Самыми распространёнными устройствами внутренней защиты являются тепловые автоматические выключатели и терморезисторы PTC.

Тепловой автоматический выключатель и термостаты

Тепловые автоматические выключатели – это биметаллические пластины (таблетки), размыкающие цепь при увеличении температуры в обмотках (на рис).

Они имеют широкий диапазон температур отключения. Бывают двух видов: с нормально открытыми и нормально закрытыми контактами. Наиболее часто применяются таблетки с нормально закрытыми контактами. Одну или две таблетки встраивают в обмотки статора, соединяют последовательно и выводят на клеммную коробку. Затем при электрическом монтаже двигателя эти контакты напрямую подключают в цепь питания катушки пускателя или контактора. При достижении температуры в обмотках статора равной температуре срабатывания биметаллической пластины, происходит разрыв цепи питания пускателя, и двигатель останавливается. После остывания обмоток, контакты снова замыкаются, и двигатель включается в работу.

Терморезисторы PTC

Терморезисторы PTС (терморезисторы с положительным температурным коэффициентом сопротивления) встраиваться в обмотки электродвигателя заводом изготовителем. Обычно устанавливаются три последовательно соединенных датчика PTC: по одному в каждой обмотке. Цвета проводов датчиков помогают определить температуру срабатывания. Температура срабатывания терморезисторов находится в диапазоне от 90°C до 180°C с шагом 5°. (на рис)

Выводы терморезисторов подключаются к реле контроля температуры, которое отключает цепь питания двигателя при резком увеличении сопротивления. Терморезисторы имеют нелинейную характеристику зависимости сопротивления от температуры. При температуре окружающей среды, сопротивление трех терморезисторов равно примерно 200 Ом; но оно резко увеличится до 3 кОм при достижении температуры отключения реле. Реле контроля температуры обмотки двигателя отключает двигатель от цепи питания при достижении сопротивления 3,3 кОм. После снижения температуры сопротивление терморезисторов уменьшается, и когда сопротивление снижается до 1,8 кОм, реле включает двигатель в работу. Реле контроля температуры TER-7 имеет функцию контроля исправности датчиков, проверка на отсутствие обрыва и короткого замыкания. Функция «memory – память» при срабатывании реле, контакты остаются в разомкнутом состоянии до вмешательства обслуживающего персонала. Возврат в рабочее состояние происходит после нажатия на кнопку «reset – сброс».

Для надежной защиты электродвигателей в процессе эксплуатации необходимо использовать все три вида защит: внешнюю, внутреннюю и встроенную.

Спасибо.