Все о тюнинге авто

Теплотехнический расчет наружной стены 640. Как сделать теплотехнический расчёт наружных стен малоэтажного здания? Теплотехнический расчет стен

Чтобы в жилище было тепло в самые сильные морозы, необходимо правильно подобрать систему теплоизоляции – для этого выполняют теплотехнический расчет наружной стены.Результат вычислений показывает, насколько эффективен реальный или проектируемый способ утепления.

Как сделать теплотехнический расчет наружной стены

Вначале следует подготовить исходные данные. На расчетный параметр влияют следующие факторы:

  • климатический регион, в котором находится дом;
  • назначение помещения – жилой дом, производственное здание, больница;
  • режим эксплуатации здания – сезонный или круглогодичный;
  • наличие в конструкции дверных и оконных проемов;
  • влажность внутри помещения, разница внутренней и наружной температуры;
  • число этажей, особенности перекрытия.

После сбора и записи исходной информации определяют коэффициенты теплопроводности строительных материалов, из которых изготовлена стена. Степень усвоения тепла и теплоотдачи зависит от того, насколько сырым является климат. В связи с этим для вычисления коэффициентов используют карты влажности, составленные для Российской Федерации. После этого все числовые величины, необходимые для расчета, вводятся в соответствующие формулы.

Теплотехнический расчет наружной стены, пример для пенобетонной стены

В качестве примера рассчитываются теплозащитные свойства стены, выложенной из пеноблоков, утепленной пенополистиролом с плотностью 24 кг/м3 и оштукатуренной с двух сторон известково-песчаным раствором. Вычисления и подбор табличных данных ведутся на основании строительных правил. Исходные данные: район строительства – Москва; относительная влажность – 55%, средняя температура в доме tв = 20О С. Задается толщина каждого слоя: δ1, δ4=0,01м (штукатурка), δ2=0,2м (пенобетон), δ3=0,065м (пенополистирол «СП Радослав»).
Целью теплотехнического расчета наружной стены является определение необходимого (Rтр) и фактического (Rф) сопротивления теплопередаче.
Расчет

  1. Согласно таблице 1 СП 53.13330.2012 при заданных условиях режим влажности принимается нормальным. Требуемое значениеRтр находят по формуле:
    Rтр=a ГСОП+b,
    где a,b принимаются по таблице 3 СП 50.13330.2012. Для жилого здания и наружной стены a = 0,00035; b = 1,4.
    ГСОП – градусо-сутки отопительного периода, их находят по формуле(5.2) СП 50.13330.2012:
    ГСОП=(tв-tот)zот,
    где tв=20О С; tот – средняя температура наружного воздуха во время отопительного периода, по таблице 1 СП131.13330.2012tот = -2,2ОС; zот = 205 сут. (продолжительность отопительного сезона согласно той же таблице).
    Подставив табличные значения, находят: ГСОП = 4551О С*сут.; Rтр = 2,99 м2*С/Вт
  2. По таблице 2 СП50.13330.2012 для нормальной влажности выбирают коэффициенты теплопроводности каждого слоя «пирога»:λБ1=0,81Вт/(м°С), λБ2=0,26Вт/(м°С), λБ3=0,041Вт/(м°С), λБ4=0,81Вт/(м°С).
    По формуле E.6 СП 50.13330.2012 определяют условное сопротивление теплопередаче:
    R0усл=1/αint+δn/λn+1/αext.
    гдеαext = 23 Вт/(м2°С) из п.1 таблицы 6 СП 50.13330.2012 для наружных стен.
    Подставляя числа, получаютR0усл=2,54м2°С/Вт. Уточняют его с помощью коэффициента r=0.9, зависящего от однородности конструкций, наличия ребер, арматуры, мостиков холода:
    Rф=2,54 0,9=2,29м2 °С/Вт.

Полученный результат показывает, что фактическое теплосопротивление меньше требуемого, поэтому нужно пересмотреть конструкцию стены.

Теплотехнический расчет наружной стены, программа упрощает вычисления

Несложные компьютерные сервисы ускоряют вычислительные процессы и поиск нужных коэффициентов. Стоит ознакомиться с наиболее популярными программами.

  1. «ТеРеМок». Вводятся исходные данные: тип здания (жилой), внутренняя температура 20О, режим влажности – нормальный, район проживания – Москва. В следующем окне открывается рассчитанное значение нормативного сопротивления теплопередаче – 3,13 м2*оС/Вт.
    На основании вычисленного коэффициента происходит теплотехнический расчет наружной стены из пеноблоков (600 кг/м3), утепленной экструдированным пенополистиролом «Флурмат 200» (25 кг/м3) и оштукатуренной цементно-известковым раствором. Из меню выбирают нужные материалы, проставляя их толщину (пеноблок – 200 мм, штукатурка – 20 мм), оставив незаполненной ячейку с толщиной утеплителя.
    Нажав кнопку «Расчет», получают искомую толщину слоя теплоизолятора – 63 мм. Удобство программы не избавляет ее от недостатка: в ней не принимается во внимание разная теплопроводность кладочного материала и раствора. Спасибо автору можно сказать по этому адресу http://dmitriy.chiginskiy.ru/teremok/
  2. Вторая программа предлагается сайтом http://rascheta.net/. Ее отличие от предыдущего сервиса в том, что все толщины задаются самостоятельно. В расчет вводится коэффициент теплотехнической однородности r. Его выбирают из таблицы: для пенобетонных блоков с проволочной арматурой в горизонтальных швах r = 0,9.
    После заполнения полей программа выдает отчет о том, каково фактическое тепловое сопротивление выбранной конструкции, отвечает ли она климатическим условиям. Кроме того, предоставляется последовательность вычислений с формулами, нормативными источниками и промежуточными значениями.

При возведении дома или проведении теплоизоляционных работ важна оценка результативности утепления наружной стены: теплотехнический расчет, выполненный самостоятельно или с помощью специалиста позволяет сделать это быстро и точно.

Если вы собрались построить
небольшой кирпичный коттедж, то у Вас конечно же возникнут вопросы: «Какой
толщины должна быть стена?», «Нужен ли утеплитель?», «С какой стороны класть
утеплитель?» и т.д. и т.п.

В данной статье мы попробуем в
этом разобраться и ответить на все Ваши вопросы.

Теплотехнический расчет
ограждающей конструкции нужен, в первую очередь, для того чтобы узнать, какой
толщины должна быть ваша наружная стена.

Во-первых, нужно решить, сколько
этажей будет в вашем здании и в зависимости от этого производится расчет
ограждающих конструкций по несущей способности (не в этой статье).

По данному расчету мы определяем
количество кирпичей в кладке вашего здания.

Например, получилось 2 глиняного
кирпича без пустот, длина кирпича 250 мм,
толщина раствора 10 мм, итого получается 510 мм (плотность кирпича 0.67
в дальнейшем нам пригодится). Наружную поверхность Вы решили покрыть
облицовочной плиткой, толщина 1 см (при покупке обязательно узнать ее
плотность), а внутреннюю поверхность обыкновенной штукатуркой, толщина слоя 1.5
см, также не забудьте узнать ее плотность. В сумме 535мм.

Для того чтобы здание не
разрушилось этого конечно же хватить, но к сожалению в большинстве городов
России зимы холодные и следовательно такие стены будут промерзать. А чтобы не
стены промерзали, нужен еще слой утеплителя.

Рассчитывается толщина слоя утеплителя
следующим образом:

1. В интернете нужно скачать СНиП
II 3-79* —
«Строительная теплотехника» и СНиП 23-01-99 - «Строительная климатология».

2. Открываем СНиП строительная
климатология и находим свой город в таблице 1*, и смотрим значение на пересечении
столбца «Температура воздуха наиболее холодной пятидневки, °С, обеспечен-ностью
0.98» и строки с вашим городом. Для города Пензы например t н = -32 о С.

3. Расчетная температура внутреннего воздуха
берем

t в = 20 о С.

Коэффициент теплоотдачи для внутренних стен a в = 8,7Вт/м 2 ·˚С

Коэффициент теплоотдачи для наружных стен в зимних условиях a н = 23Вт/м 2 ·˚С

Нормативный температурный перепад между температурой внутреннего
воздуха и температурой внутренней поверхности ограждающих конструкцийΔ t н = 4 о С.

4. Далее
определяем требуемое сопротивление теплопередаче по формуле #G0 (1а) из строительной теплотехники
ГСОП = (t в — t от.пер.) z от.пер , ГСОП=(20+4,5)·207=507,15 (для города
Пензы).

По формуле (1) рассчитываем:

(где сигма это непосредственно толщина
материала, а лямбда плотность. Я взял в качестве утеплителя
пенополиуретановые
панели с плотностью 0.025)

Принимаем толщину утеплителяравной 0,054 м.

Отсюда толщина стены будет:

d = d 1 + d 2 + d 3 + d 4 =

0,01+0,51+0,054+0,015=0,589
м.

Сезон ремонта подошел. Голову сломала: как сделать хороший ремонт за меньшие деньги. Про кредит мыслей нет. Опора только на имеющиеся...

Вместо того чтобы откладывать генеральный ремонт из года в год, можно приготовиться к нему так, чтобы пережить его в меру...

Для начало нужно убрать всё что осталось от старой компании которая там работала. Ломаем искусственную перегородку. После этого сдираем все...

При эксплуатации здания нежелателен как перегрев, так и промерзание. Определить золотую середину позволит теплотехнический расчет, который не менее важен, чем вычисление экономичности, прочности, стойкости к огню, долговечности.

Исходя из теплотехнических норм, климатических характеристик, паро – и влагопроницаемости осуществляется выбор материалов для сооружения ограждающих конструкций. Как выполнить этот расчет, рассмотрим в статье.

От теплотехнических особенностей капитальных ограждений здания зависит многое. Это и влажность конструктивных элементов, и температурные показатели, которые влияют на наличие или отсутствие конденсата на межкомнатных перегородках и перекрытиях.

Расчет покажет, будут ли поддерживаться стабильные температурные и влажностные характеристики при плюсовой и минусовой температуре. В перечень этих характеристик входит и такой показатель, как количество тепла, теряющегося ограждающими конструкциями строения в холодный период.

Нельзя начинать проектирование, не имея всех этих данных. Опираясь на них, выбирают толщину стен и перекрытий, последовательность слоев.

По регламенту ГОСТ 30494-96 температурные значения внутри помещений. В среднем она равна 21⁰. При этом относительная влажность обязана пребывать в комфортных рамках, а это в среднем 37%. Наибольшая скорость перемещения массы воздуха - 0,15 м/с

Теплотехнический расчет ставит перед собой цели определить:

  1. Идентичны ли конструкции заявленным запросам с точки зрения тепловой защиты?
  2. Настолько полно обеспечивается комфортный микроклимат внутри здания?
  3. Обеспечивается ли оптимальная тепловая защита конструкций?

Основной принцип - соблюдение баланса разности температурных показателей атмосферы внутренних конструкций ограждений и помещений. Если его не соблюдать, тепло будут поглощать эти поверхности, а внутри температура останется очень низкой.

На внутреннюю температуру не должны существенно влиять изменения теплового потока. Эту характеристику называют теплоустойчивостью.

Путем выполнения теплового расчета определяют оптимальные пределы (минимальный и максимальный) габаритов стен, перекрытий по толщине. Это является гарантией эксплуатации здания на протяжении длительного периода как без экстремальных промерзаний конструкций, так и перегревов.

Параметры для выполнения расчетов

Чтобы выполнить теплорасчет, нужны исходные параметры.

Зависят они от ряда характеристик:

  1. Назначения постройки и ее типа.
  2. Ориентировки вертикальных ограждающих конструкций относительно направленности к сторонам света.
  3. Географических параметров будущего дома.
  4. Объема здания, его этажности, площади.
  5. Типов и размерных данных дверных, оконных проемов.
  6. Вида отопления и его технических параметров.
  7. Количества постоянных жильцов.
  8. Материала вертикальных и горизонтальных оградительных конструкций.
  9. Перекрытия верхнего этажа.
  10. Оснащения горячим водоснабжением.
  11. Вида вентиляции.

Учитываются при расчете и другие конструктивные особенности строения. Воздухопроницаемость ограждающих конструкций не должна способствовать чрезмерному охлаждению внутри дома и снижать теплозащитные характеристики элементов.

Потери тепла вызывает и переувлажнение стен, а кроме того, это влечет за собой сырость, отрицательно влияющую на долговечность здания.

В процессе расчета, прежде всего, определяют теплотехнические данные стройматериалов, из которых изготавливаются ограждающие элементы строения. Помимо этого, определению подлежит приведенное сопротивление теплопередачи и сообразность его нормативному значению.

Формулы для производства расчета

Утечки тепла, теряемого домом, можно разделить на две основные части: потери через ограждающие конструкции и потери, вызванные функционированием . Кроме того, тепло теряется при сбросе теплой воды в канализационную систему.

Для материалов, из которых устроены ограждающие конструкции, нужно найти величину показателя теплопроводности Кт (Вт/м х градус). Они есть в соответствующих справочниках.

Теперь, зная толщину слоев, по формуле: R = S/Кт , высчитывают термическое сопротивление каждой единицы. Если конструкция многослойная, все полученные значения складывают.

Размеры тепловых потерь проще всего определить путем сложения тепловых течений через ограждающие конструкции, которые собственно и образуют это здание

Руководствуясь такой методикой, к учету принимают тот момент, что материалы, составляющие конструкции, имеют неодинаковую структуру. Также учитывается, что поток тепла, проходящий сквозь них, имеет разную специфику.

Для каждой отдельной конструкции теплопотери определяют по формуле:

Q = (A / R) х dT

  • А - площадь в м².
  • R - сопротивление конструкции теплопередаче.
  • dT - разность температур снаружи и изнутри. Определять ее нужно для самого холодного 5- дневного периода.

Выполняя расчет таким образом, можно получить результат только для самого холодного пятидневного периода. Общие теплопотери за весь холодный сезон определяют путем учета параметра dT, учитывая температуру не самую низкую, а среднюю.

В какой степени усваивается тепло, а также теплоотдача зависит от влажности климата в регионе. По этой причине при вычислениях применяют карты влажности

Для этого есть формула:

W = ((Q + Qв) х 24 х N)/1000

В ней N - длительность отопительного периода в днях.

Недостатки расчета по площади

Расчет, основанный на площадном показателе, не отличается большой точностью. Здесь не принят во внимание такой параметр, как климат, температурные показатели как минимальные, так и максимальные, влажность. Из-за игнорирования многих важных моментов расчет имеет значительные погрешности.

Часто стараясь перекрыть их, в проекте предусматривают «запас».

Если все же для расчета выбран этот способ, нужно учитывать следующие нюансы:

  1. При высоте вертикальных ограждений до трех метров и наличии не более двух проемов на одной поверхности, результат лучше умножить на 100 Вт.
  2. Если в проект заложен балкон, два окна либо лоджия, умножают в среднем на 125 Вт.
  3. Когда помещения промышленные или складские, применяют множитель 150 Вт.
  4. В случае расположения радиаторов вблизи окон, их проектную мощность увеличивают на 25%.

Формула по площади имеет вид:

Q=S х 100 (150) Вт.

Здесь Q - комфортный уровень тепла в здании, S - площадь с отоплением в м². Числа 100 или 150 - удельная величина тепловой энергии, расходуемой для нагрева 1 м².

Потери через вентиляцию дома

Ключевым параметром в этом случае является кратность воздухообмена. При условии, что стены дома паропроницаемые, эта величина равна единице.

Проникновение холодного воздуха в дом осуществляется по приточной вентиляции. Вытяжная вентиляция способствует уходу теплого воздуха. Снижает потери через вентиляцию рекуператор-теплообменник. Он не допускает ухода тепла вместе с выходящим воздухом, а входящие потоки он нагревает

Предусматривается полное обновление воздуха внутри здания за один час. Здания, построенные по стандарту DIN, имеют стены с пароизоляцией, поэтому здесь кратность воздухообмена принимают равной двум.

Есть формула, по которой определяют теплопотери через систему вентиляции:

Qв = (V х Кв: 3600) х Р х С х dT

Здесь символы обозначают следующее:

  1. Qв - теплопотери.
  2. V - объем комнаты в мᶾ.
  3. Р - плотность воздуха. еличина ее принимается равной 1,2047 кг/мᶾ.
  4. Кв - кратность воздухообмена.
  5. С - удельная теплоемкость. Она равна 1005 Дж/кг х С.

По итогам этого расчета можно определить мощность теплогенератора отопительной системы. В случае слишком высокого значения мощности выходом из ситуации может стать . Рассмотрим несколько примеров для домов из разных материалов.

Пример теплотехнического расчета №1

Рассчитаем жилой дом, находящийся в 1 климатическом районе (Россия), подрайон 1В. Все данные взяты из таблицы 1 СНиП 23-01-99. Наиболее холодная температура, наблюдающаяся на протяжении пяти дней обеспеченностью 0,92 - tн = -22⁰С.

В соответствии со СНиП отопительный период (zоп) продолжается 148 суток. Усредненная температура на протяжении отопительного периода при среднесуточных температурных показателях воздуха на улице 8⁰ - tот = -2,3⁰. Температура снаружи в отопительный сезон - tht = -4,4⁰.

Теплопотери дома - важнейший момент на этапе его проектирования. От итогов расчета зависит и выбор стройматериалов, и утеплителя. Нулевых потерь не бывает, но стремиться нужно к тому, чтобы они были максимально целесообразными

Оговорено условие, что в комнатах дома должна быть обеспечена температура 22⁰. Дом имеет два этажа и стены толщиной 0,5 м. Высота его - 7 м, габариты в плане - 10 х 10 м. Материал вертикальных ограждающих конструкций - теплая керамика. Для нее коэффициент теплопроводности - 0,16 Вт/м х С.

В качестве наружного утеплителя, толщиной 5 см, использована минеральная вата. Значение Кт для нее - 0,04 Вт/м х С. Количество оконных проемов в доме - 15 шт. по 2,5 м² каждое.

Теплопотери через стены

Прежде всего, нужно определить термическое сопротивление как керамической стены, так и утеплителя. В первом случае R1 = 0,5: 0,16 = 3,125 кв. м х С/Вт. Во втором - R2 = 0,05: 0,04 = 1,25 кв. м х С/Вт. В целом для вертикальной ограждающей конструкции: R = R1 + R2 = 3.125 + 1.25 = 4.375 кв. м х С/Вт.

Так как теплопотери имеют прямо пропорциональную взаимосвязь с площадью ограждающих конструкций, рассчитываем площадь стен:

А = 10 х 4 х 7 – 15 х 2,5 = 242,5 м²

Теперь можно определить потери тепла через стены:

Qс = (242,5: 4.375) х (22 – (-22)) = 2438,9 Вт.

Теплопотери через горизонтальные ограждающие конструкции рассчитывают аналогично. В итоге все результаты суммируют.

Если подвал под полом первого этажа отапливается, пол можно не утеплять. Стены подвала все же лучше обшить утеплителем, чтобы тепло не уходило в грунт.

Определение потерь через вентиляцию

Чтобы упростить расчет, не учитывают толщину стен, а просто определяют объем воздуха внутри:

V = 10х10х7 = 700 мᶾ.

При кратности воздухообмена Кв = 2, потери тепла составят:

Qв = (700 х 2) : 3600) х 1,2047 х 1005 х (22 – (-22)) = 20 776 Вт.

Если Кв = 1:

Qв = (700 х 1) : 3600) х 1,2047 х 1005 х (22 – (-22)) = 10 358 Вт.

Эффективную вентиляцию жилых домов обеспечивают роторные и пластинчатые рекуператоры. КПД у первых выше, он достигает 90%.

Пример теплотехнического расчета №2

Требуется произвести расчет потерь сквозь стену из кирпича толщиной 51 см. Она утеплена 10-сантиметровым слоем минеральной ваты. Снаружи – 18⁰, внутри - 22⁰. Габариты стены - 2,7 м по высоте и 4 м по длине. Единственная наружная стена помещения ориентирована на юг, внешних дверей нет.

Для кирпича коэффициент теплопроводности Кт = 0,58 Вт/мºС, для минеральной ваты - 0,04 Вт/мºС. Термическое сопротивление:

R1 = 0,51: 0,58 = 0,879 кв. м х С/Вт. R2 = 0,1: 0,04 = 2,5 кв. м х С/Вт. В целом для вертикальной ограждающей конструкции: R = R1 + R2 = 0.879 + 2,5 = 3.379 кв. м х С/Вт.

Площадь внешней стены А = 2,7 х 4 = 10,8 м²

Потери тепла через стену:

Qс = (10,8: 3.379) х (22 – (-18)) = 127,9 Вт.

Для расчета потерь через окна применяют ту же формулу, но термическое сопротивление их, как правило, указано в паспорте и рассчитывать его не нужно.

В теплоизоляции дома окна - «слабое звено». Через них уходит довольно большая доля тепла. Уменьшат потери многослойные стеклопакеты, теплоотражающие пленки, двойные рамы, но даже это не поможет избежать теплопотерь полностью

Если в доме окна с размерами 1,5 х 1,5 м ² энергосберегающие, ориентированы на Север, а термическое сопротивление равно 0,87 м2°С/Вт, то потери составят:

Qо = (2,25: 0,87) х (22 – (-18)) = 103,4 т.

Пример теплотехнического расчета №3

Выполним тепловой расчет деревянного бревенчатого здания с фасадом, возведенным из сосновых бревен слоем толщиной 0,22 м. Коэффициент для этого материала - К=0,15. В этой ситуации теплопотери составят:

R = 0,22: 0,15 = 1,47 м² х ⁰С/Вт.

Самая низкая температура пятидневки - -18⁰, для комфорта в доме задана температура 21⁰. Разница составит 39⁰. Если исходить из площади 120 м², получится результат:

Qс = 120 х 39: 1,47 = 3184 Вт.

Для сравнения определим потери кирпичного дома. Коэффициент для силикатного кирпича - 0,72.

R = 0,22: 0,72 = 0,306 м² х ⁰С/Вт.
Qс = 120 х 39: 0,306 = 15 294 Вт.

В одинаковых условиях деревянный дом более экономичный. Силикатный кирпич для возведения стен здесь не подходит вовсе.

Деревянное строение имеет высокую теплоемкость. Его ограждающие конструкции долго хранят комфортную температуру. Все же, даже бревенчатый дом нужно утеплять и лучше сделать это и изнутри, и снаружи

Пример теплорасчета №4

Дом будет построен в Московской области. Для расчета взята стена, созданная из пеноблоков. Как утеплитель применен . Отделка конструкции - штукатурка с двух сторон. Структура ее - известково-песчаная.

Пенополистирол имеет плотность 24 кг/мᶾ.

Относительные показатели влажности воздуха в комнате - 55% при усредненной температуре 20⁰. Толщина слоев:

  • штукатурка - 0,01 м;
  • пенобетон - 0,2 м;
  • пенополистирол - 0,065 м.

Задача - отыскать нужное сопротивление теплопередаче и фактическое. Необходимое Rтр определяют, подставив значения в выражение:

Rтр=a х ГСОП+b

где ГОСП - это градусо-сутки сезона отопления, а и b - коэффициенты, взятые из таблицы №3 Свода Правил 50.13330.2012. Поскольку здание жилое, a равно 0,00035, b = 1,4.

ГСОП высчитывают по формуле, взятой из того же СП:

ГОСП = (tв – tот) х zот.

В этой формуле tв = 20⁰, tот = -2,2⁰, zот - 205 - отопительный период в сутках. Следовательно:

ГСОП = (20 – (-2,2)) х 205 = 4551⁰ С х сут.;

Rтр = 0,00035 х 4551 + 1,4 = 2,99 м2 х С/Вт.

Используя таблицу №2 СП50.13330.2012, определяют коэффициенты теплопроводности для каждого пласта стены:

  • λб1 = 0,81 Вт/м ⁰С;
  • λб2 = 0,26 Вт/м ⁰С;
  • λб3 = 0,041 Вт/м ⁰С;
  • λб4 = 0,81 Вт/м ⁰С.

Полное условное сопротивление теплопередаче Rо, равно сумме сопротивлений всех слоев. Рассчитывают его по формуле:

Подставив значения получают: Rо усл. = 2,54 м2°С/Вт. Rф определяют путем умножения Rо на коэффициент r, равный 0.9:

Rф = 2,54 х 0,9 = 2,3 м2 х °С/Вт.

Результат обязывает изменить конструкцию ограждающего элемента, поскольку фактическое тепловое сопротивление меньше расчетного.

Существует множество компьютерных сервисов, ускоряющих и упрощающих расчеты.

Теплотехнические расчеты напрямую связаны с определением . Что это такое и как найти ее значение узнаете из рекомендуемой нами статьи.

Выводы и полезное видео по теме

Выполнение теплотехнического расчета при помощи онлайн-калькулятора:

Правильный теплотехнический расчет:

Грамотный теплотехнический расчет позволит оценить результативность утепления наружных элементов дома, определить мощность необходимого отопительного оборудования.

Как результат, можно сэкономить при покупке материалов и нагревательных приборов. Лучше заранее знать, справиться ли техника с нагревом и кондиционированием строения, чем покупать все наугад.

Оставляйте, пожалуйста, комментарии, задавайте вопросы, размещайте фото по теме статьи в находящемся ниже блоке. Расскажите о том, как теплотехнический расчет помог вам выбрать обогревательное оборудование нужной мощности или систему утепления. Не исключено, что ваша информация пригодится посетителям сайта.

Пример теплотехнического расчета ограждающих конструкций

1. Исходные данные

Техническое задание. В связи с неудовлетворительным тепло-влажностным режимом здания необходимо произвести утепление его стен и мансардной крыши. С этой целью выполнить расчеты термического сопротивления, теплоустойчивости, воздухо- и паропроницаемости ограждающих конструкций здания с оценкой возможности конденсации влаги в толще ограждений. Установить необходимую толщину теплоизоляционного слоя, необходимость применения ветро- и пароизоляции, порядок расположения слоев в конструкции. Разработать проектное решение, отвечающее требованиям СНиП 23-02-2003 «Тепловая защита зданий» к ограждающим конструкциям. Расчеты выполнить в соответствии со сводом правил по проектированию и строительству СП 23-101-2004 "Проектирование тепловой защиты зданий".

Общая характеристика здания. Двухэтажное жилое здание с мансардой расположено в пос. Свирица Ленинградской области. Общая площадь наружных ограждающих конструкций - 585,4 м 2 ; общая площадь стен 342,5 м 2 ; общая площадь окон 51,2 м 2 ; площадь крыши – 386 м 2 ; высота подвала - 2,4 м.

Конструктивная схема здания включает несущие стены, железобетонные перекрытия из многопустотных панелей, толщиной 220 мм и бетонный фундамент. Наружные стены выполнены из кирпичной кладки и оштукатурены изнутри и снаружи строительным раствором слоем около 2 см.

Покрытие здания имеет стропильную конструкцию со стальной фальцевой кровлей, выполненной по обрешетке с шагом 250 мм. Утеплитель толщиной 100 мм выполнен из минераловатных плит, уложенных между стропилами

В здании предусмотрено стационарное электро-теплоаккумуляционное отопление. Подвал имеет техническое назначение.

Климатические параметры. Согласно СНиП 23-02-2003 и ГОСТ 30494-96 расчетную среднюю температуру внутреннего воздуха принимаем равной

t int = 20 °С.

Согласно СНиП 23-01-99 принимаем:

1) расчетную температуру наружного воздуха в холодный период года для условий пос. Свирица Ленинградской области

t ext = -29 °С;

2) продолжительность отопительного периода

z ht = 228 сут.;

3) среднюю температуру наружного воздуха за отопительный период

t ht = -2,9 °С.

Коэффициенты теплоотдачи. Значения коэффициента теплоотдачивнутренней поверхности ограждений принимаем:для стен, полов и гладких потолков α int = 8,7 Вт/(м 2 ·ºС).

Значения коэффициента теплоотдачи наружнойповерхности ограждений принимаем:для стен и покрытий α ext =23; перекрытий чердачных α ext =12 Вт/(м 2 ·ºС);

Нормируемое сопротивление теплопередаче. Градусо-сутки отопительного периода G d определяются по формуле (1)

G d = 5221 °С·сут.

Поскольку значение G d отличается от табличных значений, нормативное значение R req определяем по формуле (2).

Согласно СНиП 23-02-2003 для полученного значения градусо-суток нормируемое сопротивление теплопередаче R req , м 2 ·°С/Вт, составляет:

Для наружных стен 3,23;

Покрытий и перекрытий над проездами 4,81;

Ограждений над неотапливаемыми подпольями и подвалами 4,25;

Окон и балконных дверей 0,54.

2. Теплотехнический расчет наружных стен

2.1. Сопротивление наружных стен теплопередаче

Наружные стены выполнены из пустотелого керамического кирпича и имеют толщину 510 мм. Стены оштукатурены изнутри известково-цементным раствором толщиной 20 мм, снаружи – цементным раствором той же толщины.

Характеристики данных материалов – плотность γ 0 , коэффициент теплопроводности в сухом состоянии  0 и коэффициент паропроницаемости μ – принимаем по табл. П.9 приложения. При этом в расчетах используем коэффициенты теплопроводности материалов  W для условий эксплуатации Б, (для влажных условий эксплуатации), которые получаем по формуле (2.5). Имеем:

Для известково-цементного раствора

γ 0 = 1700 кг/м 3 ,

W =0,52(1+0,168·4)=0,87 Вт/(м·°С),

μ=0,098 мг/(м·ч·Па);

Для кирпичной кладки из пустотелого керамического кирпича на цементно-песчаном растворе

γ 0 = 1400 кг/м 3 ,

W =0,41(1+0,207·2)=0,58 Вт/(м·°С),

μ=0,16 мг/(м·ч·Па);

Для цементного раствора

γ 0 = 1800 кг/м 3 ,

W =0,58(1+0,151·4)=0,93 Вт/(м·°С),

μ=0,09 мг/(м·ч·Па).

Сопротивление теплопередаче стены без утепления равно

R о = 1/8,7 + 0,02/0,87 + 0,51/0,58 + 0,02/0,93 + 1/23 = 1,08 м 2 ·°С/Вт.

При наличии оконных проемов, образующих откосы стены, коэффициент теплотехнической однородности кирпичных стен, толщиной 510 мм принимаем r = 0,74.

Тогда приведенное сопротивление теплопередаче стен здания, определяемое по формуле (2.7), равно

R r о =0,74·1,08=0,80 м 2 ·°С/Вт.

Полученное значение намного ниже нормативного значения сопротивления теплопередаче, поэтому необходимо устройство наружной теплоизоляции и последующее оштукатуривание защитным и декоративным составами штукатурного раствора с армированием стеклосеткой.

Для возможности просыхания теплоизоляции закрывающий ее штукатурный слой должен быть паропроницаемым, т.е. пористым с малой плотностью. Выбираем поризованный цементно-перлитовый раствор, имеющий следующие характеристики:

γ 0 = 400 кг/м 3 ,

 0 = 0,09 Вт/(м·°С),

W =0,09(1+0,067·10)=0,15 Вт/(м·°С),

 = 0,53 мг/(м·ч·Па).

Суммарное сопротивление теплопередаче добавляемых слоев теплоизоляции R т и штукатурной обделки R ш должно быть не менее

R т +R ш =3,23/0,74-1,08=3,28 м 2 ·°С/Вт.

Предварительно (с последующим уточнением) принимаем толщину штукатурной обделки 10 мм, тогда сопротивление ее теплопередаче равно

R ш =0,01/0,15=0,067 м 2 ·°С/Вт.

При использовании для теплоизоляции минераловатных плит производства ЗАО «Минеральная вата» марки Фасад Баттс  0 =145 кг/м 3 ,  0 =0,033,  W =0,045 Вт/(м·°С) толщина теплоизоляционного слоя составит

δ=0,045·(3,28-0,067)=0,145 м.

Плиты Rockwool выпускаются толщиной от 40 до 160 мм с шагом 10 мм. Принимаем стандартную толщину теплоизоляции 150 мм. Таким образом, укладка плит будет производиться в один слой.

Проверка выполнения требований по энергосбережению. Расчетная схема стены представлена на рис. 1. Характеристика слоев стены и общее сопротивление стены теплопередаче без учета пароизоляции приведены в табл. 2.1.

Таблица 2.1

Характеристика слоев стены и общее сопротивление стены теплопередаче

Материал слоя

Плотность γ 0 , кг/м 3

Толщина δ, м

Расчетный коэффициент теплопроводности λ W , Вт/(м К)

Расчетное сопротивление теплопередаче R , м 2 ·°С)/Вт

Внутренняя штукатурка (известково-цементный раствор)

Кладка из пустотного керамического кирпича

Внешняя штукатурка (цементный раствор)

Минераловатный утеплитель ФАСАД БАТТС

Штукатурка защитно-декоративная (цементно-перлитовый раствор)

Сопротивление теплопередаче стен здания после утепления составит:

R o = 1/8,7+4,32+1/23=4,48 м 2 ·°С/Вт.

С учетом коэффициента теплотехнической однородности наружных стен (r = 0,74) получаем приведенное сопротивление теплопередаче

R o r = 4,48·0,74=3,32 м 2 ·°С/Вт.

Полученное значение R o r = 3,32 превышает нормативное R req =3,23, так как фактическая толщина теплоизоляционных плит больше расчетной. Такое положение отвечает первому требованию СНиП 23-02-2003 к термическому сопротивлению стены – R о ≥R req .

Проверка выполнения требований по санитарно-гигиеническим и комфортным условиям в помещении. Расчетный перепад между температурой внутреннего воздуха и температурой внутренней поверхности стены Δt 0 составляет

Δt 0 =n (t int t ext )/(R o r ·α int )=1,0(20+29)/(3,32·8,7)=1,7 ºС.

Согласно СНиП 23-02-2003 для наружных стен жилых зданий допустим перепад температуры не более 4,0 ºС. Таким образом, второе условие (Δt 0 ≤Δt n ) выполнено.

П
роверим третье условие (τ int >t рос), т.е. возможна ли конденсация влаги на внутренней поверхности стены при расчетной температуре наружного воздуха t ext = -29 °С. Температуру внутренней поверхности τ int ограждающей конструкции (без теплопроводного включения) определяем по формуле

τ int = t int –Δt 0 =20–1,7=18,3 °С.

Упругость водяного пара в помещении е int равна

Теплотехнический расчет позволяет определить минимальную толщину ограждающих конструкций для того, чтобы не было случаев перегрева или промерзания в процессе эксплуатации строения.

Ограждающие конструктивные элементы отапливаемых общественных и жилых зданий, за исключением требований устойчивости и прочности, долговечности и огнестойкости, экономичности и архитектурного оформления, должны отвечать в первую очередь теплотехническим нормам. Выбирают ограждающие элементы в зависимости от конструктивного решения, климатологических характеристик района застройки, физических свойств, влажно-температурного режима в здании, а также в соответствии с требованиями сопротивления теплопередаче, воздухонипроницанию и паропроницанию.

В чем смысл расчета?

  1. Если во время расчета стоимости будущего строения учитывать лишь прочностные характеристики, то, естественно, стоимость будет меньше. Однако это видимая экономия: впоследствии на обогрев помещения уйдет значительно больше средств.
  2. Грамотно подобранные материалы создадут в помещении оптимальный микроклимат.
  3. При планировке системы отопления также необходим теплотехнический расчет. Чтобы система была рентабельной и эффективной, необходимо иметь понятие о реальных возможностях здания.

Теплотехнические требования

Важно, чтобы наружные конструкции соответствовали следующим теплотехническим требованиям:

  • Имели достаточные теплозащитные свойства. Другими словами, нельзя допускать в летнее время перегрева помещений, а зимой - излишних потерь тепла.
  • Разность температур воздуха внутренних элементов ограждений и помещений не должна быть выше нормативного значения. В противном случае может произойти чрезмерное охлаждение тела человека излучением тепла на данные поверхности и конденсация влаги внутреннего воздушного потока на ограждающих конструкциях.
  • В случае изменения теплового потока температурные колебания внутри помещения должны быть минимальные. Данное свойство называется теплоустойчивостью.
  • Важно, чтобы воздухонепроницаемость ограждений не вызывала сильного охлаждения помещений и не ухудшала теплозащитные свойства конструкций.
  • Ограждения должны иметь нормальный влажностный режим. Так как переувлажнение ограждений увеличивает потери тепла, вызывает в помещении сырость, уменьшает долговечность конструкций.

Чтобы конструкции соответствовали вышеперечисленным требованиям, выполняют теплотехнический расчет, а также рассчитывают теплоустойчивость, паропроницаемость, воздухопроницаемость и влагопередачу по требованиям нормативной документации.

Теплотехнические качества

От теплотехнических характеристик наружных конструктивных элементов строений зависит:

  • Влажностный режим элементов конструкции.
  • Температура внутренних конструкций, которая обеспечивает отсутствие на них конденсата.
  • Постоянная влажность и температура в помещениях, как в холодное, так и в теплое время года.
  • Количество тепла, которое теряется зданием в зимний период времени.

Итак, исходя из всего перечисленного выше, теплотехнический расчет конструкций считается немаловажным этапом в процессе проектирования зданий и сооружений, как гражданских, так и промышленных. Проектирование начинается с выбора конструкций - их толщины и последовательности слоев.

Задачи теплотехнического расчета

Итак, теплотехнический расчет ограждающих конструктивных элементов осуществляется с целью:

  1. Соответствия конструкций современным требованиям по тепловой защите зданий и сооружений.
  2. Обеспечения во внутренних помещениях комфортного микроклимата.
  3. Обеспечения оптимальной тепловой защиты ограждений.

Основные параметры для расчета

Чтобы определить расход тепла на отопление, а также произвести теплотехнический расчет здания, необходимо учесть множество параметров, зависящих от следующих характеристик:

  • Назначение и тип здания.
  • Географическое расположение строения.
  • Ориентация стен по сторонам света.
  • Размеры конструкций (объем, площадь, этажность).
  • Тип и размеры окон и дверей.
  • Характеристики отопительной системы.
  • Количество людей, находящихся в здании одновременно.
  • Материал стен, пола и перекрытия последнего этажа.
  • Наличие системы горячего водоснабжения.
  • Тип вентиляционных систем.
  • Другие конструктивные особенности строения.

Теплотехнический расчет: программа

На сегодняшний день разработано множество программ, позволяющих произвести данный расчет. Как правило, расчет осуществляется на основании методики, изложенной в нормативно-технической документации.

Данные программы позволяют вычислить следующее:

  • Термическое сопротивление.
  • Потери тепла через конструкции (потолок, пол, дверные и оконные проемы, а также стены).
  • Количество тепла, требуемого для нагрева инфильтрирующего воздуха.
  • Подбор секционных (биметаллических, чугунных, алюминиевых) радиаторов.
  • Подбор панельных стальных радиаторов.

Теплотехнический расчет: пример расчета для наружных стен

Для расчета необходимо определить следующие основные параметры:

  • t в = 20°C - это температура воздушного потока внутри здания, которая принимается для расчета ограждений по минимальным значениям наиболее оптимальной температуры соответствующего здания и сооружения. Принимается она в соответствии с ГОСТом 30494-96.

  • По требованиям ГОСТа 30494-96 влажность в помещении должна составлять 60%, в результате в помещении будет обеспечен нормальный влажностный режим.
  • В соответствии с приложением B СНиПа 23-02-2003, зона влажности сухая, значит, условия эксплуатации ограждений - A.
  • t н = -34 °C - это температура наружного воздушного потока в зимний период времени, которая принимается по СНиП исходя из максимально холодной пятидневки, имеющей обеспеченность 0,92.
  • Z от.пер = 220 суток - это длительность отопительного периода, которая принимается по СНиПу, при этом среднесуточная температура окружающей среды ≤ 8 °C.
  • T от.пер. = -5,9 °C - это температура окружающей среды (средняя) в отопительный период, которая принимается по СНиП, при суточной температуре окружающей среды ≤ 8 °C.

Исходные данные

В таком случае теплотехнический расчет стены будет производиться с целью определения оптимальной толщины панелей и теплоизоляционного материала для них. В качестве наружных стен будут использоваться сэндвич-панели (ТУ 5284-001-48263176-2003).

Комфортные условия

Рассмотрим, как выполняется теплотехнический расчет наружной стены. Для начала следует вычислить требуемое сопротивление теплопередачи, ориентируясь на комфортные и санитарно-гигиенические условия:

R 0 тр = (n × (t в - t н)) : (Δt н × α в), где

n = 1 - это коэффициент, который зависит от положения наружных конструктивных элементов по отношению к наружному воздуху. Его следует принимать по данным СНиПа 23-02-2003 из таблицы 6.

Δt н = 4,5 °C - это нормируемый перепад температуры внутренней поверхности конструкции и внутреннего воздуха. Принимается по данным СНиПа из таблицы 5.

α в = 8,7 Вт/м 2 °C - это теплопередача внутренних ограждающих конструкций. Данные берутся из таблицы 5, по СНиПу.

Подставляем данные в формулу и получаем:

R 0 тр = (1 × (20 - (-34)) : (4,5 × 8,7) = 1,379 м 2 °C/Вт.

Условия энергосбережения

Выполняя теплотехнический расчет стены, исходя из условий энергосбережения, необходимо вычислить требуемое сопротивление теплопередачи конструкций. Оно определяется по ГСОП (градусо-сутки отопительного периода, °C) по следующей формуле:

ГСОП = (t в - t от.пер.) × Z от.пер, где

t в - это температура воздушного потока внутри здания, °C.

Z от.пер. и t от.пер. - это продолжительность (сут.) и температура (°C) периода, имеющего среднесуточную температуру воздуха ≤ 8 °C.

Таким образом:

ГСОП = (20 - (-5,9)) ×220 = 5698.

Исходя из условий энергосбережения, определяем R 0 тр методом интерполяции по СНиПу из таблицы 4:

R 0 тр = 2,4 + (3,0 - 2,4)×(5698 - 4000)) / (6000 - 4000)) = 2,909 (м 2 °C/Вт)

R 0 = 1/ α в + R 1 + 1/ α н, где

d - это толщина теплоизоляции, м.

l = 0,042 Вт/м°C - это теплопроводность минераловатной плиты.

α н = 23 Вт/м 2 °C - это теплоотдача наружных конструктивных элементов, принимаемый по СНиПу.

R 0 = 1/8,7 + d/0,042+1/23 = 0,158 + d/0,042.

Толщина утеплителя

Толщина теплоизоляционного материала определяется исходя из того, что R 0 = R 0 тр, при этом R 0 тр берется при условиях энергосбережения, таким образом:

2,909 = 0,158 + d/0,042, откуда d = 0,116 м.

Подбираем марку сэндвич-панелей по каталогу с оптимальной толщиной теплоизоляционного материала: ДП 120, при этом общая толщина панели должна составлять 120 мм. Аналогичным образом производится теплотехнический расчет здания в целом.

Необходимость выполнения расчета

Запроектированные на основании теплотехнического расчета, выполненного грамотно, ограждающие конструкции позволяют сократить затраты на отопление, стоимость которого регулярно увеличиваются. К тому же сбережение тепла считается немаловажной экологической задачей, ведь это напрямую связано с уменьшением потребления топлива, что приводит к снижению воздействия негативных факторов на окружающую среду.

Кроме того, стоит помнить о том, что неправильно выполненная теплоизоляция способна привести к переувлажнению конструкций, что в результате приведет к образованию плесени на поверхности стен. Образование плесени, в свою очередь, приведет к порче внутренней отделки (отслаивание обоев и краски, разрушение штукатурного слоя). В особо запущенных случаях может понадобиться радикальное вмешательство.

Очень часто строительные компании в своей деятельности стремятся использовать современные технологии и материалы. Только специалисту под силу разобраться в необходимости применения того или иного материала, как отдельно, так и в совокупности с другими. Именно теплотехнический расчет поможет определиться с наиболее оптимальными решениями, которые обеспечат долговечность конструктивных элементов и минимальные финансовые затраты.