Все о тюнинге авто

Термисторная (позисторная) защита электродвигателей. Тепловая защита электродвигателя. Электротепловое реле Простая электронная термозащита на электро двигатель

Практически нет в эксплуатации техники, где не использовался бы электрический . Этот вид электромеханических приводов самой разной конфигурации применяется повсеместно. С конструктивной точки зрения, электромотор – оборудование несложное, вполне понятное и простое. Однако работа электродвигателя сопровождается значительными нагрузками разного характера. Именно поэтому на практике применяются реле защиты двигателя, функциональность которых также носит разносторонний характер. Степень эффективности, на которую рассчитана защита электрического двигателя, как правило, определяется схемными решениями внедрения реле и датчиков контроля.

Применительно к малозначимым сервисным моторам, для автоматического отключения используется мгновенное реле с обратно-зависимым временем реагирования на фазные перегрузки по току.


Схема защиты двигателя от перегрузки по току и замыканий на землю: 1, 2, 3 — трансформаторы тока; 4, 5, 6 — устройства отсечки по току; Ф1, Ф2, Ф3 — линейные фазы; 7 — земля

Реле чередования фаз обычно настраиваются на 3,5-4 кратное превышение рабочего тока двигателя, с учётом достаточной задержки по времени, чтобы исключить срабатывание в моменты запуска мотора.

Для сервисных двигателей высокой значимости реле тока с обратно-зависимым временем срабатывания, как правило, не используются. Причиной тому является задействованный автоматический выключатель непосредственно в цепи двигателя.

Перегрев статорных обмоток

Критичное состояние, в основном обусловленное непрерывной перегрузкой, торможением ротора или дисбалансом тока статора. Для полной защиты, в данном случае, трёхфазный двигатель необходимо оснастить элементами контроля перегрузки на каждой фазе.

Здесь для защиты малозначимых сервисных двигателей обычно используется защита от перегрузки либо прямое срабатывание на отключение от источника питания в случае перегрузки.

Если номинальная мощность двигателя превышает 1000 кВт, вместо одиночного реле с резистивным датчиком температуры, как правило, используется реле обратно-зависимого времени срабатывания по току.


Термисторы предельной температуры для статора двигателя: 1 — залуженная часть проводника 7-10 мм; 2 — размер длины 510 — 530 мм; 3 — длина термистора 12 мм; 4 — диаметр термистора 3 мм; Дуговые соединения длиной 200 мм

Для значимых моторов автоматическое отключение применяют по желанию. В качестве главного защитника от перегрева статорных обмоток используется тепловое реле.

Фактор перегрева ротора (фазного)

Защита от перегрева ротора часто встречается в двигателях с раневым (фазным) ротором. Увеличение тока ротора отражается на токе статора, что требует включения защиты от превышения тока статора.

Настройка реле защиты статора по току в целом составляет величину, равную току полной нагрузки, увеличенному в 1,6 раза. Этого значения вполне достаточно, чтобы определить перегрев фазного ротора и включить блокировку.

Защита от пониженного напряжения

Электродвигатель потребляет чрезмерный ток при работе под напряжением ниже установленной нормы. Поэтому защита от недостатка напряжения или перенапряжения должна обеспечиваться датчиками перегрузки или чувствительными температурными элементами.

Чтобы избежать перегрева, двигатель необходимо обесточить на 40-50 минут даже в случае небольших перегрузок, превышающих 10 — 15% норматива.


Классический вариант термального контроля статорной обмотки: Т — датчики температуры, встроенные непосредственно среди обмоточных проводников

Защитное реле следует использовать для контроля нагрева ротора двигателя из-за токов обратной последовательности, возникающих в статоре по причине дисбаланса напряжения питания.

Дисбаланс и пофазный сбой

Несбалансированное трехфазное питание также вызывает протекание тока обратной последовательности в обмотках статора двигателя. Подобное состояние вызывает перегрев обмотки статора и ротора (фазного).

Несбалансированное состояние, кратковременно передаваемое двигателю, необходимо контролировать и поддерживать на таком уровне, чтобы избежать появления непрерывного состояния дисбаланса.

Предпочтительно реле контроля межфазного замыкания питать от положительной фазы, а для защиты от замыканий на землю использовать дифференциальное реле мгновенной отсечки, подключенное в цепь контура трансформатора тока.

Непредусмотренный реверс фазы

В некоторых случаях реверс фазы видится опасным явлением для мотора. Например, такое состояние может негативно отражаться на работе лифтового оборудования, кранов, подъемников, некоторых видов общественного транспорта.

Здесь обязательно следует предусматривать защиту от реверса фаз – специализированное реле. Работа реле реверса фазы основана на электромагнитном принципе. Прибор содержит дисковый двигатель, приводимый в движение магнитной системой.


Плата и схема устройства реверса фазы: 1 — автоматический выключатель или плавкая вставка; 2 — защита от перегрузки; 3 — фаза текущая; 4 — реверс фазы; 5 — электродвигатель

Если отмечается правильная последовательность фаз, диск формирует крутящий момент в положительном направлении. Следовательно, вспомогательный контакт удерживается в закрытом положении.

Когда фиксируется реверс фазы, крутящий момент диска изменяется на противоположное направление. Следовательно, вспомогательный контакт переключается в открытое положение.

Эта система коммутации используется для защиты, в частности – для управления автоматическим выключателем.

Традиционная защита асинхронных двигателей

Защиты трехфазных асинхронных двигателей небольшой мощности показана на рисунке ниже. Магнитный контактный пускатель содержит группу кнопок пуска и останова, связанных соответствующими вспомогательными контактами, защитными устройствами перегрузки или недогрузки.

Стартовая кнопка (КН1) представляет собой обычный прямой контактный переключатель, который обычно удерживается в нормально открытом состоянии усилием пружины. В свою очередь кнопка останова (КН2) удерживается в состоянии нормально закрытом также посредством пружины.

Стоит нажать кнопку пуска (замкнуть линию), рабочая катушка контактора получает питание через контакты (ВК) реле перегрузки (Р1-Р3). Образованное магнитное поле катушки притягивает металлический сердечник контактора.

В результате замыкаются три главных контакта (К1-К3) магнитного пускателя, через которые электродвигатель (М) соединяется с трёхфазным источником питания.


Схема пуска, останова и аварийной блокировки: П1, П2, П3 — плавкие предохранители; Р1, Р2, Р3 — токовые реле; ВК — контакты блокировки; КП — катушка пускателя; К1, К2, К3 — контакторы пускателя; КН1 — кнопка пуска; КН2 — кнопка останова; М- мотор

Пока кнопка «пуск» (КН1) замкнута, цепь питания проходит через контакты кнопки «стоп» (КН2) и катушку магнитного пускателя (КП). Между тем, цепь питания катушки индуктивности теперь уже поддерживается иной схемой.

Поддержка осуществляется вспомогательными контактами (ВК) реле с токовым управлением (Р1-Р3), поэтому возврат кнопки «пуск» в исходное положение ситуацию не изменит. Контактор останется замкнутым, а двигатель в работе.

Как работает функционал защиты

Обычно двигатели мощностью до 20 кВт рассматриваются как маломощные аппараты. Максимум защиты таких моторов обеспечивается:

  • предохранителями с высокой отключающей способностью,
  • биметаллическими реле и
  • реле напряжения.

Все эти элементы защиты собраны, как правило, в структуре магнитного пускателя.

Чаще всего выгорание линейных предохранителей защиты двигателя отмечается на одной фазе. Этот обрыв может оставаться не обнаруженным, даже если двигатель защищён обычным биметаллическим реле.


Структура предохранителя: 1 — торцевая крышка; 2 — кремнезём; 3 — фарфоровый корпус; 4 — выступ крепежа; 5 — предохраняющий элемент; 6 — оловянный сплав; 7 — конструкция управления дугой

Обнаружение обрыва фазы зачастую не дают и реле напряжения, подключенные на каждой линии. Несмотря на обрыв одной фазы, схемой обмоток электродвигателя поддерживается значительная обратная ЭДС на клемме фазы, находящейся в обрыве.

Поэтому уровень напряжения на реле остаётся достаточно высоким, что не приводит к срабатыванию. Однако сложности обнаружения подобных дефектов вполне преодолимы.

Достаточно использовать дополнительный набор из трех реле, управляемых по току. Подключение наглядно демонстрирует схема защиты двигателя, показанная выше.

Защитные функции токовых реле

Управляемые током реле — устройства простые, но обладающие эффектом мгновенной отсечки. Конструктивно прибор состоит из следующих деталей:

  • катушка тока;
  • один или несколько нормально разомкнутых контактов.

Механизм движения контактов управляются ЭДС катушки тока. Традиционно токовые реле подключаются на каждой фазе последовательно с плавкими защитными предохранителями.

Когда срабатывает магнитный пускатель, электродвигатель запускается, ток питания течёт через катушку. Магнитодвижущая сила катушки (ЭДС) воздействует на механику и замыкает контакты реле. Цепь питания мотора замыкается.


Блокиратор токовой перегрузки: 1 — электрические коннекторы; 2 — индикатор отключения; 3 — тест; 4 — клеммы для проводников двигателя; 5 — сигнальный контакт; 6 — кнопка сброса; 7 — селектор «авто» или «ручной»; 8 — кнопка останова; 9 — шкала установки тока; 10 — механическая защёлка

Если, вдруг, случится обрыв фазы, ток катушки индуктивности снижается, контакты соответствующего реле переключаются в нормально-открытое положение.

Учитывая, что контакты всех трех защитных реле соединяются последовательно, цепь питания мотора разомкнётся.

Защитные функции тепловых реле

Все классические конструкции моторов предполагают использование опорных и упорных подшипников. В зависимости от мощности электродвигателей, может устанавливаться тот или иной вид подшипников, либо оба вида вместе.

Неисправность подшипника любого вида нередко приводит к полной остановке вращения ротора. Внезапное , в свою очередь, провоцирует резкий подъём тока статорной обмотки двигателя и последующий перегрев.

Здесь токовая защита не способна удовлетворительно реагировать на событие. Как правило, этот вид защиты настроен с учётом стартового тока двигателя и короткой временной составляющей. Проблема клина может быть решена только путём внедрения защиты от тепловой перегрузки.

Также защиту в данном случае допустимо обеспечить индивидуальным модулем, настроенным на определенное время срабатывания по току. В случае применения тепловой отсечки, разумно ставить датчик температуры, встроенный непосредственно в подшипниковый узел.

Теоретический минимум по защите электродвигателей

Для защиты и предотвращения нежелательных явлений, связанных с чрезмерным повышением температуры нагрева обмоток электродвигателей бытовых приборов при неисправной их эксплуатации или аварийных режимах работы, часто применяют специальные защитные устройства, которые по принципу действия можно разделить на: токовые, температурные и температурно-токовые.

Итак, по порядку:

Токовые защитные устройства реагируют на ток, протекающий в обмотке статора защищаемого электродвигателя (плавкие предохранители, токовые защитные реле). Основной частью предохранителя является плавкая вставка, которая представляет собой небольшой по длине проводник или пластину, изготовленную из серебра меди или цинка.

Плавкая вставка включается последовательно с защищаемой цепью. При увеличении тока, протекающего через защищаемую цепь, выше допустимого плавкая вставка перегорает и отключает прибор от сети. Для повторного включения прибора необходимо заменить плавкую вставку. При случайных кратковременных перегрузках для тепловой защиты электродвигателей плавкие предохранители применяются редко.

Наибольшее распространение получили токовые защитные реле. Принцип действия их основан на изменении физических свойств материалов при изменении температуры нагрева. Чувствительным элементов таких реле служит биметаллическая пластина, состоящая из двух сваренных по всей длине слоев разнородных металлов с разными коэффициентами линейного температурного расширения. Один конец биметаллической пластины закреплен неподвижно, а второй, на котором расположен подвижный контакт, свободно перемещается.

При обесточенной обмотке электродвигателя подвижный контакт биметаллической пластины соприкасается с неподвижным контактом, расположенным на корпусе реле. При протекании тока через обмотку электродвигателя и последовательно соединенное с ней тепловое реле биметаллическая пластина изгибается в сторону слоя металла с меньшим коэффициентом линейного температурного расширения и при определенном токе размыкает цепь питания электродвигателя.

По способу нагрева биметаллической пластины токовые реле подразделяются на реле с непосредственным, косвенным и комбинированным нагревом. В токовых защитных реле с непосредственным нагревом ток обмотки статора электродвигателя протекает непосредственно через биметаллическую пластину.

Вследствие удельного сопротивления материала биметалла такую конструкцию реле применяют для электродвигателей большой мощности, имеющий большой ток обмотки статора. При косвенном нагреве ток обмотки статора защищаемого электродвигателя протекает через специальный нагреватель, выполненный из пластины или проволоки с большим удельным сопротивлением. Нагреватель можно расположить вблизи биметаллической пластины или непосредственно намотать на нее. Биметаллическую пластину при этом не включают в цепь питания защищаемого электродвигателя.

При комбинированном нагреве ток защищаемого электродвигателя протекает через последовательно соединенные нагревательный элемент и биметаллическую пластину. Изгиб биметаллической пластины обусловлен совместным действием тепла, выделяемого в биметаллической пластине и в нагревателе. Токовые реле с косвенным и комбинированным нагревом применяют для защиты обмоток маломощных электродвигателей с непосредственным разрывом контактов реле силовой питающей сети.

Токовые реле располагают отдельно от электродвигателя. Связь между ним и электродвигателем осуществляется через ток обмотки статора, вследствие чего реле чувствительны лишь к составляющей потерь, которая обусловлена увеличением тока обмотки статора. Однако практике возможны случаи возрастания температуры нагрева обмоток статора без увеличения протекающего через них тока (нарушения условий вентиляции, увеличение механических потерь и др.). На такие возрастания температуры обмоток токовые реле не реагируют.

Токовые реле имеют неодинаковую чувствительность к изменениям перегрузок. Наибольшей чувствительностью они обладают в диапазоне больших перегрузок, связанных с резким возрастанием тока статора защищаемого электродвигателя. В диапазоне малых перегрузок чувствительность их снижается, что является основным недостатком токовой защиты.

Температурные защитные устройства реагируют на температуру нагрева обмоток электродвигателя и позволяют защищать двигатель от многих сложных типов перегрузок (увеличение механических потерь, длительные небольшие перегрузки и др.). Конструктивно температурные реле выполняются в виде биметаллических дисков, встраиваемых непосредственно в обмотку статора. Преимущество температурной защиты - высокая эффективность при малых длительных перегрузках.

Однако этот вид защиты плохо действует при больших толчковых перегрузках, так как тепловая инерция изоляции обмотки статора, через которую тепло передается от обмотки чувствительному элементу реле, приводит к запаздыванию срабатывания защиты. Вследствие этого температурная защита неэффективна при заторможенном роторе электродвигателя, что является ее существенным недостатком.

Температурно-токовые защитные устройства совмещают в себе положительные свойства температурных и токовых устройств и свободны от недостатков, свойственных каждому из них в отдельности. Температурно-токовые защитные устройства достаточно хорошо защищают электродвигателя как при возникновении небольших длительных перегрузках, так и при кратковременных.

Конструктивно температурно-токовую защиту выполняют обычно в виде биметаллических дисков с дополнительным нагревателем. Диск крепят к стали сердечника ротора или встраивают непосредственно в обмотку, а нагреватель включают последовательно с обмоткой статора. Биметаллический диск реагирует на температуру нагрева обмотки и обеспечивает защиту двигателя при длительных небольших перегрузках, а нагреватель реагирует на ток обмотки статора, обеспечивая защиту при кратковременных длительных больших перегрузках.

В зарубежных электробытовых приборах для защиты электродвигателей широко применяют температурную и температурно-токовую защиту, в отечественных наибольшее распространение получила токовая. Основные параметры защитных токовых реле: время срабатывания контактов и время возврата их в исходное положение при определенных значениях тока и окружающей температуры.

Зависимость времени срабатывания контактов реле от тока при определенной температуре называют защитной характеристикой реле. Совокупность таких характеристик для различных температур окружающей среды образует семейство защитных характеристик реле.

В стиральных машинах, например, применяют тепловые реле типа РТ. Это реле с одним нормально замкнутым контактом, служащее для защиты от перегрузок электроустановок и однофазных электрических двигателей переменного тока с питающим напряжением 220 В частотой 50 Гц.

Защита электродвигателя AZD-M


10. Защита электродвигателей (1 семестр)

Для защиты электродвигателей от коротких замыканий и перегрузок используют сочетание предохранителей с магнитными пускателями, а также автоматические выключатели. Отсутствие в ряде случаев технической возможности постоянной настройки тепловой защиты выдвинули новые требования к разработке встроенной температурной защиты.

Как показывает практика, встроенная температурная защита эффективно отключает электродвигатели при длительных перегрузках, неправильных процессах пуска и торможения, повышенной частоте включении, обрыве фаз, колебаниях напряжения сети в пределах 70...110% от номинального значения, заклинивании приводного механизма, включении электродвигателя с заклиненным ротором. Повышенной температуре окружающей среды, нарушениях в системе охлаждения.

Температурная защита состоит из температурных датчиков и управляющего устройства.

Температурными датчиками служат полупроводниковые термосопротивления - позисторы пли резисторы, встроенные в лобовую часть обмотки статора (по одному в каждую фазу).

Характерное свойство - высокая чувствительность в узком интервале температур. Например, промышленный позистор СТ5-1, который можно использовать в схеме встроенной температурной защиты электродвигателя, имеет в интервале температур от 60 до 100° практически постоянное сопротивление, а в интервале от 120 до 130° его сопротивление увеличивается в несколько тысяч раз.

В качестве температурных датчиков для устройств встроенной защиты применяют кобальтомарганцевые термосопротивления типа ТР-33, работающие в релейном режиме. Имеется шесть вариантов рабочих групп термосоиротивлений ТР-33, каждой из которых соответствует своп минимальная и максимальная рабочая температура в пределах 5°.

Встроенную защиту с термосопротивлениями ТР-33 настраивают в зависимости от класса изоляции защищаемого электродвигателя. Настройку осуществляют либо изменением напряжения, подаваемого на термосопротивлеиие. либо шунтированиям термосопротивленнй добавочными сопротивлениями.

Наибольшее практическое применение для датчиков встроенной температурной зашиты электродвигателей находят терморезисторы с положительным CT14-1A (t°ср-130°) или СТ 14-1 Б (t°ср -105°).

Терморезисторы СТ14-1А изготовляют в виде дисков диаметром 3 и толщиной 1,5 мм. Комплект таких датчиков (три диска из расчета один на фазу) является чувствительным органом защиты, подающим сигнал в управляющее устройство.

В настоящее время выпускают два вида устройств встроенной температурой защиты - УВТЗ-1 и УВТЗ-4А. Принцип их действия одинаков, хотя схема и конструктивное оформление различны.

Устройства температурной защиты унифицированы для всех типоразмеров электродвигателей, взаимозаменяемы и не требуют регулировки и настройки при монтаже и эксплуатации.

Управляющее устройство служит для усиления сигнала, поступающего от встроенных в обмотку статора электродвигателя температурных датчиков, и преобразования в сигнал, управляющий отключением (типа ПМЛ, ПМЕ и др.).

Устройство типа УВТЗ-1 состоит из преобразователя и выходного реле. В качестве выходного реле применяют РЗС-6, которое подает сигнал на управление магнитным пускателем.

В схеме автоматически осуществляется самоконтроль за ее работой, то есть обеспечивается гарантия отключения электродвигателя при возникновении неисправности в каком-либо элементе температурной защиты. При выходе из строя датчиков температуры или обрыве цепи их соединения с управляющим устройством последнее не позволяет включить электродвигатель в сеть.

В случае короткого замыкания в цени датчиков с управляющим устройством транзисторы будут закрыты, управляющий переход транзистора обесточен, реле отключается и своими контактами разрывает пень питания катушки магнитного пускателя.

Рис. 1. Схема электрическая принципиальная устройства встроенной температурной защиты электродвигателей УВТЗ-1

Датчики температуры устанавливают в асинхронные двигатели на заводе при их изготовлении или капитальном ремонте, а также в действующие электродвигатели во время эксплуатации. После их установки измеряют сопротивление всей цепи датчиков, которое при температуре 20 ±5° должно быть в пределах 120... 150 Ом.

Измерительный ток применяемого омметра не может превышать 50 мА. а напряжение - 2,5 В. Использовать для этих целей мегомметры не разрешается.

Измеряют сопротивление изоляции датчиков относительно обмотки и корпуса электродвигателя меггомметром на 500 В, причем величина этого сопротивления не должна превышать 0,5 МОм.

Устройство рассчитано для работы в вертикальном положении, допускает установку на стенах и конструкциях, не подверженных ударам или сильной вибрации, и не должно подвергаться постоянному нагреву, в том числе солнечному. Его можно размещать в станциях управления, сборных распределительных устройствах и отдельных шкафах.

Управляющее устройство соединяют с датчиком изолированным проводом сечением не менее 0,5 мм2 для медных проводов и 1,0 мм2 - для алюминиевых.

Проверяют работоспособность смонтированного устройства нажатием кнопки «Пуск» магнитного пускателя. При исправном электродвигателе и правильном соединении датчиков устройства и магнитного пускателя, а также при исправном их состоянии электродвигатель вращается.

Убедившись в его нормальной работе на холостом ходу, необходимо разомкнуть цепь датчиков в коробке выводов электродвигателя. Если при этом электродвигатель отключится от сети, значит, устройство встроенной защиты работает нормально. Повторно проверяют защиту путем замыкания накоротко цепи датчиков в коробке выводов. В этом случае электродвигатель также должен отключиться от сети.

Асинхронный однофазный двигатель

В рубрике «Общее» на сайте «Насосы и принадлежности» рассмотрим эксплуатацию электрических двигателей. В процессе эксплуатации электродвигателей могут возникать различные неисправности. Мы будем рассматривать электродвигатели, которые эксплуатируются с насосным оборудованием. Очень важно заранее предусмотреть все возможные сбои и как можно надежнее защитить оборудование от сбоев. Перечень причин, которые могут привести к отказу оборудования, включает: качество электроснабжения, качество монтажа, условия эксплуатации. Качество электроснабжения: повышенное или пониженное напряжение, скачки напряжения, обрыв фазы.

Качество монтажа: неправильный или некачественный монтаж.

Условия эксплуатации: недостаточное охлаждение двигателя (обдув), высокая температура окружающей среды, пониженное атмосферное давление (работа на большой высоте над уровнем моря), высокая температура перекачиваемой жидкости, слишком большая вязкость перекачиваемой жидкости, частые включения/выключения электродвигателя, заклинивание ротора.

Число пусков в час

Очень часто в технических характеристиках к насосному оборудованию присутствует такой параметр, как количество пусков в час. Необходимость контролировать этот параметр заключается в том, что каждый раз, когда производится запуск электродвигателя, происходит пяти-семи кратное превышение номинального рабочего тока. Высокие пусковые токи нагревают обмотки статора двигателя. Если электродвигатель не успевает остывать из-за частых пусков, то это может привести к выходу его из строя или сокращению срока службы изоляции (пробою изоляции обмоток). Количество пусков, которое может происходить в течение часа, рассчитывает и определяет завод изготовитель. Эта информация размещается в технических характеристиках или в инструкции по эксплуатации.

Защита электродвигателей

Чтобы избежать непредвиденных сбоев и дорогостоящего ремонта электродвигателя в процессе эксплуатации, в первую очередь, необходимо обеспечить двигатель защитными устройствами. Защита электродвигателя имеет три уровня:

  • Внешняя защита от короткого замыкания. Самый простой способ – это установка внешних предохранителей.
  • Внешняя защита от перегрузок. Это защита по току.
  • Встроенная защита. Это защита от перегрева обмоток с помощью тепловых автоматических выключателей или датчиков PTС . Для встроенной тепловой защиты всегда требуется исполнительное внешнее устройство – пускатель для тепловых автоматических выключателей и реле контроля температуры обмотки двигателя, (как пример, TER-7 производства ETI Словения) для датчиков PTС.

Для защиты оборудования от перегрузок и короткого замыкания необходимо определить, какое устройство защиты будет использоваться. Оно должно автоматически отключать питание от сети. Плавкий предохранитель является простейшим устройством, выполняющим две функции. Как правило, плавкие предохранители соединяются между собой при помощи аварийного выключателя, который может отключить двигатель от сети питания.

Автоматический токовый выключатель

Автоматический токовый выключатель является устройством защиты от перегрузок по току. Он автоматически размыкает цепь при заданном значении перегрузки по току или возникновении короткого замыкания. Если токовый выключатель применяется в диапазоне своих рабочих параметров, размыкание и замыкание не наносит ему никакого вреда. Сразу же после отключения по перегрузке можно легко возобновить работу автоматического выключателя. Автоматические выключатели бывают двух видов: тепловые и магнитные.

Тепловые автоматические выключатели – это надёжный и экономичный тип защитных устройств, которые используются для электродвигателей. Конструктивно автоматический выключатель состоит из электромагнитного расцепителя, теплового расцепителя и дугогасящей камеры. Они могут выдерживать большие перегрузки по току, которые возникают во время запуска электродвигателя, и защищают электродвигатель при заклинивании ротора. Тепловые автоматические выключатели нечувствительны к напряжению, но чувствительны к температуре.

Магнитные автоматические выключатели являются точными, надёжными и экономичными. Магнитный пускатель – это комбинированный электрический прибор. В состав магнитного пускателя входят: контактор переменного тока, тепловое реле и кнопки включения и выключения. Магнитный автоматический выключатель нечувствителен к изменению температуры окружающей среды: она не влияет на предел его срабатывания, но чувствителен к изменению напряжения. Автоматические выключатели подбираются по номинальному току, потребляемому электродвигателем.

Реле перегрузки:

  • При пуске электродвигателя позволяют выдерживать временные перегрузки без разрыва цепи.
  • Размыкают цепь электродвигателя, если ток превышает предельно допустимое значение и возникает угроза повреждения электродвигателя.
  • Устанавливаются в исходное положение автоматически или вручную после устранения перегрузки.

Обозначение класса срабатывания

Как правило, реле перегрузки реагируют на условия перегрузки в соответствии с характеристикой срабатывания. Деление изделий на классы определяет, за какой период времени реле размыкает цепь при перегрузке. Наиболее часто встречающиеся классы: 10, 20 и 30. Цифры определяют время, необходимое реле для отключения. Реле перегрузки класса 10 срабатывает в течение 10 секунд и менее, при 600% номинального тока, реле класса 20 срабатывает в течение 20 секунд и менее, а реле класса 30 – в течение 30 секунд и менее.

Устройства внешней защиты

Устройства внешней защиты: плавкие предохранители, автоматические выключатели, – реагируют на превышение тока, который потребляет электродвигатель в процессе эксплуатации. Они предназначены для отключения электродвигателя, если ток превышает номинальное значение. Внешнее устройство защиты предохраняет двигатель от выхода из строя в случае блокировки ротора.

При перегреве обмоток электродвигателя этот вид защиты не работает. Примеры:

  • Когда в крышку вентилятора двигателя попадают посторонние предметы, или двигатель смонтирован крышкой вентилятора очень близко от стенки (недостаточно охлаждение), то происходит медленный нагрев до опасной температуры;
  • Очень высокая температура окружающей среды 40°С и выше;
  • Когда внешняя защита двигателя выставлена на слишком высокий ток срабатывания или настроена неправильно;
  • Когда происходят частые включения/выключения электродвигателя, то за короткий период времени пусковые токи могут перегреть обмотки двигателя.

Устройства внутренней защиты

Устройства внутренней защиты обмоток, такие как автоматические выключатели и терморезисторы, намного эффективнее, чем устройства внешней защиты. Это объясняется тем, что они встраиваются в обмотки статора и измеряют температуру непосредственно в обмотках. Самыми распространёнными устройствами внутренней защиты являются тепловые автоматические выключатели и терморезисторы PTC.

Тепловой автоматический выключатель и термостаты

Тепловые автоматические выключатели – это биметаллические пластины (таблетки), размыкающие цепь при увеличении температуры в обмотках (на рис).

Они имеют широкий диапазон температур отключения. Бывают двух видов: с нормально открытыми и нормально закрытыми контактами. Наиболее часто применяются таблетки с нормально закрытыми контактами. Одну или две таблетки встраивают в обмотки статора, соединяют последовательно и выводят на клеммную коробку. Затем при электрическом монтаже двигателя эти контакты напрямую подключают в цепь питания катушки пускателя или контактора. При достижении температуры в обмотках статора равной температуре срабатывания биметаллической пластины, происходит разрыв цепи питания пускателя, и двигатель останавливается. После остывания обмоток, контакты снова замыкаются, и двигатель включается в работу.

Терморезисторы PTC

Терморезисторы PTС (терморезисторы с положительным температурным коэффициентом сопротивления) встраиваться в обмотки электродвигателя заводом изготовителем. Обычно устанавливаются три последовательно соединенных датчика PTC: по одному в каждой обмотке. Цвета проводов датчиков помогают определить температуру срабатывания. Температура срабатывания терморезисторов находится в диапазоне от 90°C до 180°C с шагом 5°. (на рис)

Выводы терморезисторов подключаются к реле контроля температуры, которое отключает цепь питания двигателя при резком увеличении сопротивления. Терморезисторы имеют нелинейную характеристику зависимости сопротивления от температуры. При температуре окружающей среды, сопротивление трех терморезисторов равно примерно 200 Ом; но оно резко увеличится до 3 кОм при достижении температуры отключения реле. Реле контроля температуры обмотки двигателя отключает двигатель от цепи питания при достижении сопротивления 3,3 кОм. После снижения температуры сопротивление терморезисторов уменьшается, и когда сопротивление снижается до 1,8 кОм, реле включает двигатель в работу. Реле контроля температуры TER-7 имеет функцию контроля исправности датчиков, проверка на отсутствие обрыва и короткого замыкания. Функция «memory – память» при срабатывании реле, контакты остаются в разомкнутом состоянии до вмешательства обслуживающего персонала. Возврат в рабочее состояние происходит после нажатия на кнопку «reset – сброс».

Для надежной защиты электродвигателей в процессе эксплуатации необходимо использовать все три вида защит: внешнюю, внутреннюю и встроенную.

Спасибо.

Среди выпускаемой продукции компании Sensata особое место занимают термостаты, служащие для отключения различных устройств (электродвигателей, обмоток реле и т.д.) от цепей питания при перегрузке по току или при перегреве. Согласно установившейся традиции Sensata называет такие устройства «мотор-протекторами» (motor-protectors), поскольку основное их назначение состоит именно в защите электромоторов. Однако заложенный в них принцип отключения цепи можно использовать также для защиты и других устройств (в этом случае используется термин «термопротектор»). В некоторых случаях мотор-протекторы Sensata можно применять вместо плавких предохранителей. При этом количество их циклов срабатывания исчисляется тысячами, тогда как плавкий предохранитель представляет собой одноразовое устройство.

Отметим, что в русскоязычной литературе мотор-протекторы принято называть просто «термореле», хотя они представляют собой более широкий класс устройств. Поскольку в статье кроме как о мотор-протекторах ни о каких других термореле речи не идет, то в отношении перечисленных ниже семейств мы в равной степени будем использовать оба термина.

Принцип действия

Как и в термостатах серии 1NT, в мотор-протекторах Sensata используется хорошо известное свойство биметаллической пластины — щелчком изгибаться при достижении некоторого критического порога температуры (что происходит благодаря различным температурным коэффициентам расширения металлов, слагающих биметаллический диск), размыкая электрический контакт, по которому протекает ток.

При снижении температуры до безопасного уровня обратное замыкание контактов происходит автоматически у всех семейств мотор-протекторов, описываемых в этой статье, за исключением одного: 3MP Self-Hold, где обратное замыкание происходит принудительно.

Поскольку протекающий ток нагревает термореле, то при заданной температуре окружающей среды можно измерить силу тока, при которой происходит нагревание до температуры размыкания, и использовать мотор-протектор как предохранитель, отключающий цепь при заданном токе (замена плавкого предохранителя).

Типы мотор-протекторов Sensata

Все мотор-протекторы компании Sensata подразделяются на несколько больших семейств:

  • 2MM- низкопрофильные мотор-протекторы, рассчитанные на малые переменные токи. Нормируемое количество циклов срабатывания: 3000 при 250В и 4 (1,5)А. Здесь и далее в аналогичных случаях в круглых скобках указывается значение индуктивного тока. А перед скобками- значение резистивного тока.
  • 7AM- полнопрофильные мотор-протекторы, рассчитанные на переменные и постоянные токи. Нормируемое количество циклов срабатывания составляет 10000 при 20А постоянного тока и 16В. Те же 10000 циклов гарантируются производителем при следующих трех режимах переменного тока: 22А при 120В; 8А при 277В и 4А при 600В.
  • 15AM- полнопрофильные мотор-протекторы с расширенным набором опций (например, больший набор возможных значений внутренних сопротивлений), рассчитанные только на переменные токи. Нормируемое количество циклов срабатывания составляет 10000 при 13 (5)А и 250В переменного тока.
  • 3MP- полнопрофильные мотор-протекторы, рассчитанные на работу с переменным током, с нагревательным элементом, увеличивающим чувствительность термореле. Нормируемые количества циклов срабатывания: 500 циклов при 27,5А@cos1 и 250В; 1000 циклов при 18А@cos0,6 и 250В; 15000 циклов при 18А@cos0,6 и 120В.
  • 3MP Self-Hold- то же, что и 3MP, но со специальной функцией удержания отключения и рассчитанные на работу с переменным током. Нормируемое значение количества циклов срабатывания: 300 циклов при 18А@cos0,6 и 250В.
  • 6AP- полнопрофильные мотор-протекторы с нагревательным элементом, рассчитанные только на работу с постоянным током. Нормируемое количество циклов срабатывания: 30000 при 30А и 15В или те же 30000 циклов при 15А и 30В.

Отметим, что термин «полнопрофильные» мотор-протекторы специалистами компании Sensata не употребляется. Мы ввели его здесь для того, чтобы при рассмотрении описываемых семейств с точки зрения конструктива противопоставить по внешнему виду и массе семейство 2MM-протекторов всем остальным.

Отличительные черты каждого
из семейств мотор-протекторов Sensata

2MM — самый маленький по размеру из описываемых в этой статье типов термореле . Низкопрофильность является его главным достоинством и недостатком одновременно. Небольшая поверхность устройства ограничивает максимальную величину рассеиваемого тепла, что делает прибор менее мощным по сравнению с его полнопрофильными «собратьями». Нормируемая величина токов отключения не превышает 7…8 А, а гарантируемое количество в 3000 циклов задается при и того более низком токе в 4 (1,5) А. Число опций при заказе термореле 2ММ также минимально. Одна из опций касается длины и типа проводного соединения. Это отражено соответствующим образом в структуре партнамбера (см. рис. 1).

Рис. 1.

Вторая — 2ММ-термореле доступны в двух модификациях: с эпоксидным покрытием и с дополнительным изолирующим чехлом. Внешний вид изделия показан на рис. 2. Длина корпуса датчика составляет не более 28 мм, а ширина 5,3 мм.

Рис. 2.

Графики на рис. 3 и 4 предназначены для выбора образцов в качестве первого приближения (для последующих верификационных тестов). Причем на рисунке 4 представлены кривые для 3-х различных биметаллических пластин с тремя различными температурами размыкания.

Рис. 3.

Рис. 4.

Другие технические характеристики 2ММ:

  • Диапазон температур размыкания (конкретная температура указывается заказчиком) 70…160°С с шагом в 5°С;
  • Допуск для температуры размыкания ±10°К;
  • Максимальная температура внешней среды 175°С;
  • Дифференциал не менее 20°К.

Небольшие размеры данного семейства определяют его применение. 2ММ предназначены для защиты от перегрузки по току (в том числе в режиме принудительного останова ротора, иначе называемого режимом заторможенного ротора) двигателей небольшой мощности, главным образом однофазных. Эти мотор-протекторы также используются в маломощных трансформаторах, катушках индуктивности, электромагнитных клапанах (соленоидных клапанах), применяющихся как в промышленности, так и в бытовой технике. В однофазных электродвигателях данный тип термореле можно включать прямо в основную цепь, монтируя его как на обмотку, так и внутрь обмотки (последнее применение возможно именно благодаря небольшим размерам данного типа мотор-протекторов).

По сравнению с 2MM полнопрофильные мотор-протекторы (чертежи с габаритными размерами на все мотор-протекторы читатель может найти на сайте производителя, ссылки на соответствующие страницы даны в конце статьи) рассчитаны на большие значения токов срабатывания и протекающих штатных токов. Эти термореле также включают в цепи переменного тока. Единственное исключение — семейство 7AM, которое можно также включать и в цепи постоянного тока. Для 7АМ гарантированное количество циклов срабатывания, равное 10000, нормируется, во-первых, для одного режима использования на постоянном токе и, во-вторых, для трех различных режимов использования на переменном токе.

7AM являются лидерами рынка в своем классе устройств (см. рис. 5). Длина корпуса этого датчика составляет 20 мм, а ширина 10 мм. Основу прибора составляет откалиброванный биметаллический диск, изготовленный по специальной запатентованной технологии Klixon® и реагирующий как на изменение окружающей температуры, так и на изменение тока, протекающего через устройство.

Рис. 5.

Рисунок 6 предназначен для выбора образцов в качестве первого приближения (для последующих верификационных тестов).

Рис. 6.

Биметаллический диск крепится посредством приваренной шпонки. Напротив него находится неподвижный контакт. Нижняя часть корпуса отделена от верхней при помощи изолирующей прокладки, которая одновременно герметизирует собой зазор между двумя половинками корпуса. От термостата идет провод, длина которого определяется заказчиком, что отражено в структуре партнамбера (см. рис. 7). Провод оканчивается разъемом под клемму либо другими предусмотренными для данного мотор-протектора стандартными типами контактов. Компания Sensata рекомендует применять 7АМ в электродвигателях с экранированным полюсом, конденсаторных двигателях, балластах люминесцентных и разрядных ламп высокой интенсивности, трансформаторах, встраиваемых светильниках, портативных батарейных источниках питания, пылесосах, вспомогательных электродвигателях, соленоидах и материнских платах персональных компьютеров. Детальная расшифровка партнамбера представлена на рис. 7.

Рис. 7.

На рис. 6 и рис. 8 представлены два основных семейства кривых, которые определяют режим работы термореле 7АМ. Допустим, температура окружающей среды составляет 25°С, мы хотим, чтобы размыкание цепи происходило при 100°С (разница между температурой размыкания и температурой окружающей среды в 75°С), а ток размыкания составлял 15 А, тогда, судя по рис. 6, мы должны выбрать вариант с биметаллическим диском с низким внутренним сопротивлением. Если мы ориентируемся на ток размыкания в 8 А (при оговоренных только что условиях), то мы должны выбрать уже вариант термореле с высоким внутренним сопротивлением биметаллического диска.

Рис. 8.

График на рис. 8 предназначен для выбора образцов в качестве первого приближения (для последующих верификационных тестов). Здесь представлены кривые для четырех различных вариантов биметаллических дисков, различающихся между собой значениями электрического сопротивления. В структуре партнамбера (рис. 7) сопротивления биметаллических дисков косвенным образом отражены в трехзначных цифровых кодах, следующих непосредственно за корневым обозначением серии: 7AM. Два из них (316 и 020) соответствуют биметаллическому диску с низким сопротивлением (для их размыкания и нагрева требуется больший ток), а два других (219 и 201) — биметаллическому диску с высоким сопротивлением (он нагревается сильнее и при меньших токах).

15AM — один из наиболее массовых мотор-протекторов, выпускаемых компанией Sensata (лидер продаж на европейском рынке защиты электродвигателей переменного тока). Термореле 15AM используются для защиты электродвигателей как промышленного, так и бытового применения. Поскольку корпус этих мотор-протекторов сделан из металла, может возникнуть необходимость изолировать его от других металлических частей устройства, в котором это термореле применяется. Для этого 15АМ может поставляться заказчику уже в изолирующем чехле (литера «А» в партнамбере). 15АМ, в отличие от 7АМ, рассчитаны только на переменный ток и выпускаются с шестью различными вариантами внутреннего сопротивления (а не с двумя, как в случае 2ММ). А значит, можно точнее подобрать режим работы устройства. С другой стороны, 7АМ выдерживают пропитку катушки, а 15АМ — нет. Кроме того, у мотор-протекторов 7АМ провода могут подводиться не только с одной, но и с разных сторон корпуса, а в 15АМ такой модификации нет. Внешне 15АМ похож на 7АМ. Кроме того, 15АМ имеют похожие графики зависимостей, представленных для 7АМ на рис. 6 и рис. 8. Их легко можно найти на сайте производителя. по приведенной в конце этой статьи ссылке на техническое описание семейства 15АМ. Там же приведена структура партнамбера 15АМ.

15AM используются для защиты моторов и насосов моющих (в том числе и посудомоечных) машин, сушильных аппаратов, пылесосов, вентиляторов, зарядных устройств для аккумуляторов и микроволновых печей.

Другие технические характеристики 15АМ:

  • Диапазон температур размыкания (конкретная температура указывается заказчиком) 65…170°С с шагом в 5°С;
  • Максимальная температура внешней среды 180°С;
  • Максимальная температура выводов 185°К.

Серия 3MP отличается тем, что внутри корпуса рядом с биметаллическим диском находится еще и S-образный нагревательный элемент, который обеспечивает лучшую чувствительность (откликаемость) данного устройства при перегреве. Для этого достаточно сравнить кривые зависимости времени размыкания первого цикла при превышении порогового тока для 3MP и 7AM: при меньших значениях тока для 3MP-термореле время срабатывания меньше. Благодаря указанному нагревательному элементу биметаллический диск разогревается быстрее. Однако, это приводит к заметному уменьшению гарантированного количества циклов срабатывания.

Компания Sensata специально сертифицировала 3МР (рис. 9) как устройство, обеспечивающее размыкание электрической цепи при превышении заданного тока и пороговой температуры, что позволяет использовать данную серию в качестве недорогого и эффективного средства защиты тороидальных трансформаторов от перегрузок. Другие применения (они также определяются повышенной чувствительностью данного типа мотор-протекторов): защита при перегреве электродвигателей моющих машин, сушилок, посудомоечных машин и пылесосов.

Рис. 9.

Предполагается, что во всех защищаемых устройствах должно использоваться напряжение 120…250 В переменного тока.

Рис. 10.

На рис. 11. представлены кривые для двух различных значений сопротивлений биметаллического диска.

Рис. 11.

Опционально мотор-протекторы данного семейства могут поставляться в специальном изолирующем чехле, сделанном из мэйлара.

Общая структура партнамбера для 3MP отсутствует, и на сегодняшний день эти устройства вначале поставляются заказчику в качестве опытных образцов, изготовленных на основании его требований. Партнамбер формируется производителем в зависимости от каждого конкретного случая.

Другие технические характеристики 3МР:

  • Допуск для температуры размыкания ±5°К;
  • Максимальная температура внешней среды (Тразм + 20)°С;

3MP Self-Hold (мотор-протектор с удержанием отключения) — по сути, тот же мотор-протектор, что и ЗMP, но возвращающийся к исходному состоянию только через некоторое время после ручного отключения цепи питания. Подчеркнем, что речь идет именно о принудительном отключении внешней цепи. Это возможно благодаря тому, что помимо S-образного нагревателя, увеличивающего чувствительность, здесь используется еще один тип нагревательного элемента — PTC-элемент (от англ. Positive Temperature Coefficient ). Он монтируется непосредственно на корпус 3MP и крепится к нему металлической скобой (рис. 12). РТС-элемент блокирует характерное для обычных нормально-замкнутых (open-on-rise) биметаллических термостатов самопроизвольное замыкание контактов при понижении температуры обратно до точки нижнего порога срабатывания. Когда основная цепь размыкается, ток начинает течь параллельно через нагревательный PTC-элемент, обладающий большим сопротивлением.

Рис. 12.

Чтобы биметаллическая пластина остыла и разомкнула цепь, а потом снова замкнула ее, необходимо, чтобы сначала остыл этот нагревательный элемент. В данном случаи переводить термин «Self-Hold» как «самовозврат к исходному состоянию» неправильно. Как раз наоборот, возврат данного термореле к исходному состоянию происходит принудительно, т.е. путем отключения внешней цепи питания. Способность отключаться автоматически (если что-то не так) и включаться назад только принудительно как раз и определяют спектр применения мотор-протекторов семейства 3MP Self-Hold как в индустриальном, так и в бытовом оборудовании: моечные машины, пылесосы, цепные пилы, газонокосилки, насосы. При этом защищаемые электродвигатели должны быть рассчитаны на переменный ток с напряжением питания 120…250 В. Однако усложнение принципа работы данного устройства (появление еще одного нагревательного элемента) приводит к дальнейшему уменьшению гарантированного числа циклов срабатывания до 300. Несмотря на то что внешний вид 3MP Self-Hold сильно отличается от 3МР, мотор-протекторы 3MP Self-Hold имеют аналогичные кривые основных рабочих зависимостей (рис. 10 и 11). Партнамбер же в каждом конкретном случаи вырабатывается производителем для заказчика на основе детального описания режимов работы.

Другие технические характеристики 3МР Self-Hold:

  • Диапазон температур размыкания (конкретная температура указывается заказчиком) 80…170°С с шагом в 5°К;
  • Допуск для температуры размыкания ±8°К;
  • Температура окружающей среды, при которой гарантируется стабильность удержания отключения (при обратном падении температуры окружающей среды ниже температуры размыкания) 0°С;
  • Максимально допустимая температура (в течение 5 минут) 200°С;
  • Максимальная температура внешней среды Тразм + 20°С.

6AP рассчитаны строго на использование на постоянном токе. По своему внутреннему устройству 6AP являются почти точной копией мотор-протекторов 3MP, которые рассчитаны на работу на переменном токе. У них также рядом с биметаллическим диском находится S-образный нагревательный элемент, который повышает чувствительность данного элемента, уменьшая величину тока размыкания и время отклика.

Кривые зависимостей максимального тока размыкания от температуры окружающей среды и зависимости времени первого размыкания от силы тока очень близки к аналогичным кривым для 3МР (рис. 10, 11), поэтому мы их здесь не приводим, отсылая читателя к соответствующему техническому описанию.

Другие технические характеристики 6АР:

  • Диапазон температур размыкания (конкретная температура указывается заказчиком) 100…170°С с шагом в 5°К;
  • Допуск для температуры размыкания ±5°К;
  • Максимально допустимая температура (в течение 5 минут) 200°С;
  • Максимальная температура внешней среды 20°С;
  • Временная задержка 4…10 сек при температуре окружающей среды 25°С.

Возможность пропитки

Для некоторых применений требуется возможность пропитки индуктивной катушки, которую надо защитить от перегрева и перегрузки по току при помощи термореле. Из описываемых в этой статье термореле для этих целей подходит только серия 7AM, т.к. изолирующая прокладка, соединяющая две половинки корпуса мотор-протекторов данного типа, специально рассчитана на пропитку.

Выбор мотор-протектора Sensata
для конкретного применения

В простых случаях заказчик сможет сам подобрать нужный мотор-протектор для своего применения, а также правильно заказать нужный партнамбер изделия. Материала, представленного в данной статье и технических описаний с сайта компании Sensata вполне достаточно. Например, самостоятельный выбор легко сделать, когда речь идет о применении мотор-протекторов серии 2ММ для стандартных приложений.

В более сложных случаях для заказа необходима консультация инженеров Sensata. В какой форме ее можно получить, и что для этого необходимо сделать — зависит от конкретных технических требований. Иногда заказчику необходимо просто заполнить стандартную анкету (как в случае с серией 3МР), и технические специалисты Sensata сами посоветуют, какой мотор-протектор больше подходит для данных условий применения. В любом случаи технические специалисты компании Sensata помогут заказчику сделать правильный предварительный выбор образцов для последующего тестирования (проведения верификационных тестов и выбора наиболее подходящего из нескольких близких по характеристикам образцов).