Все о тюнинге авто

Защита электродвигателя. Виды, схемы, принцип действия защиты электродвигателя. Выбираем защиту электродвигателя от перегрузок Выбор мотор-протектора Sensata для конкретного применения

Термисторы PTC-типа

Термистор относится к термочувствительным защитным устройства встраиваемой тепловой защите электродвигателя. Располагаются в специально предусмотренных для этой цели гнездах в лобовых частях электродвигателя (защита от заклинивания ротора) или в обмотках электродвигателя (защита от теплового перегруза).
Термистор - полупроводниковый резистор, изменяющие свое сопротивление в зависимости от температуры.
Термисторы в основном делятся на два класса:
PTC-типа - полупроводниковые резисторы с положительным температурным коэффициентом сопротивления;
NTC-типа - полупроводниковые резисторы с отрицательным температурным коэффициентом сопротивления.
Для защиты электродвигателей используются в основном PTC-термисторы (позисторы Positive Temperature Coefficient), обладающие свойством резко увеличивать свое сопротивление, когда достигнута некоторая характеристическая температура (см рис. 1). Применительно к двигателю это максимально допустимая температура нагрева обмоток статора для данного класса изоляции. Три (для двухобмоточных двигателей - шесть) PTC-термистора соединены последовательно и подключены к входу электронного блока защиты. Блок настроен таким образом, что при превышении суммарного сопротивления цепочки срабатывает контакт выходного реле, управляющий расцепителем автомата или катушкой магнитного пускателя. Термисторная защита предпочтительней в тех случаях, когда по току невозможно определить с достаточной точностью температуру двигателя. Это касается прежде всего двигателей с продолжительным периодом запуска, частыми операциями включения и отключения (повторно-кратковременным режимом) или двигателей с регулируемым числом оборотов (при помощи преобразователей частоты). Термисторная защита эффективна также при сильном загрязнении двигателей или выходе из строя системы принудительного охлаждения.

Недостатком данного вида защиты является то, что с датчиками выпускаются далеко не все типы двигателей. Это особенно касается двигателей отечественного производства. Датчики могут устанавливаться только в условиях стационарных мастерских. Температурная характеристика термистора достаточно инерционна и сильно зависит от температуры окружающей среды и от условий эксплуатации самого двигателя. Они требуют наличия специального электронного блока: термисторного устройства защиты двигателей, теплового или электронного реле перегрузки, в которых находятся блоки настройки и регулировки, а также выходные электромагнитные реле, служащие для отключения катушки пускателя или электромагнитного расцепителя.

Характеристики термистора PTC-типа по DIN44081/44082

Среди выпускаемой продукции компании Sensata особое место занимают термостаты, служащие для отключения различных устройств (электродвигателей, обмоток реле и т.д.) от цепей питания при перегрузке по току или при перегреве. Согласно установившейся традиции Sensata называет такие устройства «мотор-протекторами» (motor-protectors), поскольку основное их назначение состоит именно в защите электромоторов. Однако заложенный в них принцип отключения цепи можно использовать также для защиты и других устройств (в этом случае используется термин «термопротектор»). В некоторых случаях мотор-протекторы Sensata можно применять вместо плавких предохранителей. При этом количество их циклов срабатывания исчисляется тысячами, тогда как плавкий предохранитель представляет собой одноразовое устройство.

Отметим, что в русскоязычной литературе мотор-протекторы принято называть просто «термореле», хотя они представляют собой более широкий класс устройств. Поскольку в статье кроме как о мотор-протекторах ни о каких других термореле речи не идет, то в отношении перечисленных ниже семейств мы в равной степени будем использовать оба термина.

Принцип действия

Как и в термостатах серии 1NT, в мотор-протекторах Sensata используется хорошо известное свойство биметаллической пластины — щелчком изгибаться при достижении некоторого критического порога температуры (что происходит благодаря различным температурным коэффициентам расширения металлов, слагающих биметаллический диск), размыкая электрический контакт, по которому протекает ток.

При снижении температуры до безопасного уровня обратное замыкание контактов происходит автоматически у всех семейств мотор-протекторов, описываемых в этой статье, за исключением одного: 3MP Self-Hold, где обратное замыкание происходит принудительно.

Поскольку протекающий ток нагревает термореле, то при заданной температуре окружающей среды можно измерить силу тока, при которой происходит нагревание до температуры размыкания, и использовать мотор-протектор как предохранитель, отключающий цепь при заданном токе (замена плавкого предохранителя).

Типы мотор-протекторов Sensata

Все мотор-протекторы компании Sensata подразделяются на несколько больших семейств:

  • 2MM- низкопрофильные мотор-протекторы, рассчитанные на малые переменные токи. Нормируемое количество циклов срабатывания: 3000 при 250В и 4 (1,5)А. Здесь и далее в аналогичных случаях в круглых скобках указывается значение индуктивного тока. А перед скобками- значение резистивного тока.
  • 7AM- полнопрофильные мотор-протекторы, рассчитанные на переменные и постоянные токи. Нормируемое количество циклов срабатывания составляет 10000 при 20А постоянного тока и 16В. Те же 10000 циклов гарантируются производителем при следующих трех режимах переменного тока: 22А при 120В; 8А при 277В и 4А при 600В.
  • 15AM- полнопрофильные мотор-протекторы с расширенным набором опций (например, больший набор возможных значений внутренних сопротивлений), рассчитанные только на переменные токи. Нормируемое количество циклов срабатывания составляет 10000 при 13 (5)А и 250В переменного тока.
  • 3MP- полнопрофильные мотор-протекторы, рассчитанные на работу с переменным током, с нагревательным элементом, увеличивающим чувствительность термореле. Нормируемые количества циклов срабатывания: 500 циклов при 27,5А@cos1 и 250В; 1000 циклов при 18А@cos0,6 и 250В; 15000 циклов при 18А@cos0,6 и 120В.
  • 3MP Self-Hold- то же, что и 3MP, но со специальной функцией удержания отключения и рассчитанные на работу с переменным током. Нормируемое значение количества циклов срабатывания: 300 циклов при 18А@cos0,6 и 250В.
  • 6AP- полнопрофильные мотор-протекторы с нагревательным элементом, рассчитанные только на работу с постоянным током. Нормируемое количество циклов срабатывания: 30000 при 30А и 15В или те же 30000 циклов при 15А и 30В.

Отметим, что термин «полнопрофильные» мотор-протекторы специалистами компании Sensata не употребляется. Мы ввели его здесь для того, чтобы при рассмотрении описываемых семейств с точки зрения конструктива противопоставить по внешнему виду и массе семейство 2MM-протекторов всем остальным.

Отличительные черты каждого
из семейств мотор-протекторов Sensata

2MM — самый маленький по размеру из описываемых в этой статье типов термореле . Низкопрофильность является его главным достоинством и недостатком одновременно. Небольшая поверхность устройства ограничивает максимальную величину рассеиваемого тепла, что делает прибор менее мощным по сравнению с его полнопрофильными «собратьями». Нормируемая величина токов отключения не превышает 7…8 А, а гарантируемое количество в 3000 циклов задается при и того более низком токе в 4 (1,5) А. Число опций при заказе термореле 2ММ также минимально. Одна из опций касается длины и типа проводного соединения. Это отражено соответствующим образом в структуре партнамбера (см. рис. 1).

Рис. 1.

Вторая — 2ММ-термореле доступны в двух модификациях: с эпоксидным покрытием и с дополнительным изолирующим чехлом. Внешний вид изделия показан на рис. 2. Длина корпуса датчика составляет не более 28 мм, а ширина 5,3 мм.

Рис. 2.

Графики на рис. 3 и 4 предназначены для выбора образцов в качестве первого приближения (для последующих верификационных тестов). Причем на рисунке 4 представлены кривые для 3-х различных биметаллических пластин с тремя различными температурами размыкания.

Рис. 3.

Рис. 4.

Другие технические характеристики 2ММ:

  • Диапазон температур размыкания (конкретная температура указывается заказчиком) 70…160°С с шагом в 5°С;
  • Допуск для температуры размыкания ±10°К;
  • Максимальная температура внешней среды 175°С;
  • Дифференциал не менее 20°К.

Небольшие размеры данного семейства определяют его применение. 2ММ предназначены для защиты от перегрузки по току (в том числе в режиме принудительного останова ротора, иначе называемого режимом заторможенного ротора) двигателей небольшой мощности, главным образом однофазных. Эти мотор-протекторы также используются в маломощных трансформаторах, катушках индуктивности, электромагнитных клапанах (соленоидных клапанах), применяющихся как в промышленности, так и в бытовой технике. В однофазных электродвигателях данный тип термореле можно включать прямо в основную цепь, монтируя его как на обмотку, так и внутрь обмотки (последнее применение возможно именно благодаря небольшим размерам данного типа мотор-протекторов).

По сравнению с 2MM полнопрофильные мотор-протекторы (чертежи с габаритными размерами на все мотор-протекторы читатель может найти на сайте производителя, ссылки на соответствующие страницы даны в конце статьи) рассчитаны на большие значения токов срабатывания и протекающих штатных токов. Эти термореле также включают в цепи переменного тока. Единственное исключение — семейство 7AM, которое можно также включать и в цепи постоянного тока. Для 7АМ гарантированное количество циклов срабатывания, равное 10000, нормируется, во-первых, для одного режима использования на постоянном токе и, во-вторых, для трех различных режимов использования на переменном токе.

7AM являются лидерами рынка в своем классе устройств (см. рис. 5). Длина корпуса этого датчика составляет 20 мм, а ширина 10 мм. Основу прибора составляет откалиброванный биметаллический диск, изготовленный по специальной запатентованной технологии Klixon® и реагирующий как на изменение окружающей температуры, так и на изменение тока, протекающего через устройство.

Рис. 5.

Рисунок 6 предназначен для выбора образцов в качестве первого приближения (для последующих верификационных тестов).

Рис. 6.

Биметаллический диск крепится посредством приваренной шпонки. Напротив него находится неподвижный контакт. Нижняя часть корпуса отделена от верхней при помощи изолирующей прокладки, которая одновременно герметизирует собой зазор между двумя половинками корпуса. От термостата идет провод, длина которого определяется заказчиком, что отражено в структуре партнамбера (см. рис. 7). Провод оканчивается разъемом под клемму либо другими предусмотренными для данного мотор-протектора стандартными типами контактов. Компания Sensata рекомендует применять 7АМ в электродвигателях с экранированным полюсом, конденсаторных двигателях, балластах люминесцентных и разрядных ламп высокой интенсивности, трансформаторах, встраиваемых светильниках, портативных батарейных источниках питания, пылесосах, вспомогательных электродвигателях, соленоидах и материнских платах персональных компьютеров. Детальная расшифровка партнамбера представлена на рис. 7.

Рис. 7.

На рис. 6 и рис. 8 представлены два основных семейства кривых, которые определяют режим работы термореле 7АМ. Допустим, температура окружающей среды составляет 25°С, мы хотим, чтобы размыкание цепи происходило при 100°С (разница между температурой размыкания и температурой окружающей среды в 75°С), а ток размыкания составлял 15 А, тогда, судя по рис. 6, мы должны выбрать вариант с биметаллическим диском с низким внутренним сопротивлением. Если мы ориентируемся на ток размыкания в 8 А (при оговоренных только что условиях), то мы должны выбрать уже вариант термореле с высоким внутренним сопротивлением биметаллического диска.

Рис. 8.

График на рис. 8 предназначен для выбора образцов в качестве первого приближения (для последующих верификационных тестов). Здесь представлены кривые для четырех различных вариантов биметаллических дисков, различающихся между собой значениями электрического сопротивления. В структуре партнамбера (рис. 7) сопротивления биметаллических дисков косвенным образом отражены в трехзначных цифровых кодах, следующих непосредственно за корневым обозначением серии: 7AM. Два из них (316 и 020) соответствуют биметаллическому диску с низким сопротивлением (для их размыкания и нагрева требуется больший ток), а два других (219 и 201) — биметаллическому диску с высоким сопротивлением (он нагревается сильнее и при меньших токах).

15AM — один из наиболее массовых мотор-протекторов, выпускаемых компанией Sensata (лидер продаж на европейском рынке защиты электродвигателей переменного тока). Термореле 15AM используются для защиты электродвигателей как промышленного, так и бытового применения. Поскольку корпус этих мотор-протекторов сделан из металла, может возникнуть необходимость изолировать его от других металлических частей устройства, в котором это термореле применяется. Для этого 15АМ может поставляться заказчику уже в изолирующем чехле (литера «А» в партнамбере). 15АМ, в отличие от 7АМ, рассчитаны только на переменный ток и выпускаются с шестью различными вариантами внутреннего сопротивления (а не с двумя, как в случае 2ММ). А значит, можно точнее подобрать режим работы устройства. С другой стороны, 7АМ выдерживают пропитку катушки, а 15АМ — нет. Кроме того, у мотор-протекторов 7АМ провода могут подводиться не только с одной, но и с разных сторон корпуса, а в 15АМ такой модификации нет. Внешне 15АМ похож на 7АМ. Кроме того, 15АМ имеют похожие графики зависимостей, представленных для 7АМ на рис. 6 и рис. 8. Их легко можно найти на сайте производителя. по приведенной в конце этой статьи ссылке на техническое описание семейства 15АМ. Там же приведена структура партнамбера 15АМ.

15AM используются для защиты моторов и насосов моющих (в том числе и посудомоечных) машин, сушильных аппаратов, пылесосов, вентиляторов, зарядных устройств для аккумуляторов и микроволновых печей.

Другие технические характеристики 15АМ:

  • Диапазон температур размыкания (конкретная температура указывается заказчиком) 65…170°С с шагом в 5°С;
  • Максимальная температура внешней среды 180°С;
  • Максимальная температура выводов 185°К.

Серия 3MP отличается тем, что внутри корпуса рядом с биметаллическим диском находится еще и S-образный нагревательный элемент, который обеспечивает лучшую чувствительность (откликаемость) данного устройства при перегреве. Для этого достаточно сравнить кривые зависимости времени размыкания первого цикла при превышении порогового тока для 3MP и 7AM: при меньших значениях тока для 3MP-термореле время срабатывания меньше. Благодаря указанному нагревательному элементу биметаллический диск разогревается быстрее. Однако, это приводит к заметному уменьшению гарантированного количества циклов срабатывания.

Компания Sensata специально сертифицировала 3МР (рис. 9) как устройство, обеспечивающее размыкание электрической цепи при превышении заданного тока и пороговой температуры, что позволяет использовать данную серию в качестве недорогого и эффективного средства защиты тороидальных трансформаторов от перегрузок. Другие применения (они также определяются повышенной чувствительностью данного типа мотор-протекторов): защита при перегреве электродвигателей моющих машин, сушилок, посудомоечных машин и пылесосов.

Рис. 9.

Предполагается, что во всех защищаемых устройствах должно использоваться напряжение 120…250 В переменного тока.

Рис. 10.

На рис. 11. представлены кривые для двух различных значений сопротивлений биметаллического диска.

Рис. 11.

Опционально мотор-протекторы данного семейства могут поставляться в специальном изолирующем чехле, сделанном из мэйлара.

Общая структура партнамбера для 3MP отсутствует, и на сегодняшний день эти устройства вначале поставляются заказчику в качестве опытных образцов, изготовленных на основании его требований. Партнамбер формируется производителем в зависимости от каждого конкретного случая.

Другие технические характеристики 3МР:

  • Допуск для температуры размыкания ±5°К;
  • Максимальная температура внешней среды (Тразм + 20)°С;

3MP Self-Hold (мотор-протектор с удержанием отключения) — по сути, тот же мотор-протектор, что и ЗMP, но возвращающийся к исходному состоянию только через некоторое время после ручного отключения цепи питания. Подчеркнем, что речь идет именно о принудительном отключении внешней цепи. Это возможно благодаря тому, что помимо S-образного нагревателя, увеличивающего чувствительность, здесь используется еще один тип нагревательного элемента — PTC-элемент (от англ. Positive Temperature Coefficient ). Он монтируется непосредственно на корпус 3MP и крепится к нему металлической скобой (рис. 12). РТС-элемент блокирует характерное для обычных нормально-замкнутых (open-on-rise) биметаллических термостатов самопроизвольное замыкание контактов при понижении температуры обратно до точки нижнего порога срабатывания. Когда основная цепь размыкается, ток начинает течь параллельно через нагревательный PTC-элемент, обладающий большим сопротивлением.

Рис. 12.

Чтобы биметаллическая пластина остыла и разомкнула цепь, а потом снова замкнула ее, необходимо, чтобы сначала остыл этот нагревательный элемент. В данном случаи переводить термин «Self-Hold» как «самовозврат к исходному состоянию» неправильно. Как раз наоборот, возврат данного термореле к исходному состоянию происходит принудительно, т.е. путем отключения внешней цепи питания. Способность отключаться автоматически (если что-то не так) и включаться назад только принудительно как раз и определяют спектр применения мотор-протекторов семейства 3MP Self-Hold как в индустриальном, так и в бытовом оборудовании: моечные машины, пылесосы, цепные пилы, газонокосилки, насосы. При этом защищаемые электродвигатели должны быть рассчитаны на переменный ток с напряжением питания 120…250 В. Однако усложнение принципа работы данного устройства (появление еще одного нагревательного элемента) приводит к дальнейшему уменьшению гарантированного числа циклов срабатывания до 300. Несмотря на то что внешний вид 3MP Self-Hold сильно отличается от 3МР, мотор-протекторы 3MP Self-Hold имеют аналогичные кривые основных рабочих зависимостей (рис. 10 и 11). Партнамбер же в каждом конкретном случаи вырабатывается производителем для заказчика на основе детального описания режимов работы.

Другие технические характеристики 3МР Self-Hold:

  • Диапазон температур размыкания (конкретная температура указывается заказчиком) 80…170°С с шагом в 5°К;
  • Допуск для температуры размыкания ±8°К;
  • Температура окружающей среды, при которой гарантируется стабильность удержания отключения (при обратном падении температуры окружающей среды ниже температуры размыкания) 0°С;
  • Максимально допустимая температура (в течение 5 минут) 200°С;
  • Максимальная температура внешней среды Тразм + 20°С.

6AP рассчитаны строго на использование на постоянном токе. По своему внутреннему устройству 6AP являются почти точной копией мотор-протекторов 3MP, которые рассчитаны на работу на переменном токе. У них также рядом с биметаллическим диском находится S-образный нагревательный элемент, который повышает чувствительность данного элемента, уменьшая величину тока размыкания и время отклика.

Кривые зависимостей максимального тока размыкания от температуры окружающей среды и зависимости времени первого размыкания от силы тока очень близки к аналогичным кривым для 3МР (рис. 10, 11), поэтому мы их здесь не приводим, отсылая читателя к соответствующему техническому описанию.

Другие технические характеристики 6АР:

  • Диапазон температур размыкания (конкретная температура указывается заказчиком) 100…170°С с шагом в 5°К;
  • Допуск для температуры размыкания ±5°К;
  • Максимально допустимая температура (в течение 5 минут) 200°С;
  • Максимальная температура внешней среды 20°С;
  • Временная задержка 4…10 сек при температуре окружающей среды 25°С.

Возможность пропитки

Для некоторых применений требуется возможность пропитки индуктивной катушки, которую надо защитить от перегрева и перегрузки по току при помощи термореле. Из описываемых в этой статье термореле для этих целей подходит только серия 7AM, т.к. изолирующая прокладка, соединяющая две половинки корпуса мотор-протекторов данного типа, специально рассчитана на пропитку.

Выбор мотор-протектора Sensata
для конкретного применения

В простых случаях заказчик сможет сам подобрать нужный мотор-протектор для своего применения, а также правильно заказать нужный партнамбер изделия. Материала, представленного в данной статье и технических описаний с сайта компании Sensata вполне достаточно. Например, самостоятельный выбор легко сделать, когда речь идет о применении мотор-протекторов серии 2ММ для стандартных приложений.

В более сложных случаях для заказа необходима консультация инженеров Sensata. В какой форме ее можно получить, и что для этого необходимо сделать — зависит от конкретных технических требований. Иногда заказчику необходимо просто заполнить стандартную анкету (как в случае с серией 3МР), и технические специалисты Sensata сами посоветуют, какой мотор-протектор больше подходит для данных условий применения. В любом случаи технические специалисты компании Sensata помогут заказчику сделать правильный предварительный выбор образцов для последующего тестирования (проведения верификационных тестов и выбора наиболее подходящего из нескольких близких по характеристикам образцов).

Асинхронный двигатель является наиболее надёжным из всех электродвигателей. Он просто устроен, поэтому при правильной эксплуатации может прослужить очень долго. Но чтобы это произошло, потребуется защита от тех или иных проблем, которые могут сократить срок его службы. Если случается аварийный режим необходимо своевременно и быстро отключить электродвигатель, чтобы авария не получила разрушительного развития.

Наиболее распространёнными аварийными ситуациями и соответствующими им видами защиты являются:

  • Короткие замыкания. В такой ситуации превышение заданных величин токов в обмотках должно вызвать срабатывание защиты, которая выполнит отключение от сети.
  • Перегрузка, в результате которой температура всего движка увеличивается.
  • Проблемы с напряжением, которое либо уменьшается, либо пропадает.
  • Исчезновение напряжения на одной из фаз.

В схемах защиты используются плавкие предохранители , реле и магнитные пускатели с автоматическими выключателями . Схема может быть построена таким образом, что будет выполняться сразу несколько видов защиты асинхронного двигателя. Например, могут быть использованы автоматические выключатели с коммутациями и при перегрузках, и при коротких замыканиях. Плавкие предохранители имеют одноразовое действие и требуют вмешательства оператора для замены.

Реле и магнитные пускатели срабатывают многократно, но могут отличаться по способу восстановления исходного состояния. Для них возможен либо автоматический самовозврат, либо установка вручную. Защиту надо выбирать, основываясь на:

  • предназначении привода, в котором работает асинхронный двигатель;
  • электромеханических параметрах привода;
  • условиях окружающей среды;
  • возможности обслуживания персоналом.
  • Главными качествами защиты должна быть простота в эксплуатации и надёжность.

Любой асинхронный двигатель должен иметь защиту от коротких замыканий. При этом она должна быть спроектирована и настроена с учётом тока пуска и торможения, которые могут превышать номинальный ток почти в десять раз. Но необходимо учитывать и возможность замыканий в обмотке движка в разных местах. При таких ситуациях защитное срабатывание должно произойти при величине тока меньшей, чем при пуске асинхронного двигателя. Поскольку такие требования противоречат друг другу защиту приходится делать с задержкой отключения. Если за это время ток, который двигатель потребляет из сети, существенно увеличится, она сработает.

Требования к защите при коротких замыканиях в асинхронных двигателях заложены в ПУЭ, которые требуют следующее (показано на изображении ниже).

  • Место установки – перед зажимами движка на ответвлении к нему.
  • Надёжное отключение при коротких замыканиях на его зажимах.

Точки на изображении:

  • К1 – однофазное замыкание на землю в сетях с заземлением нейтрали;
  • К2 – двухфазное замыкание;
  • К3 – трёхфазное короткое замыкание.

Ток перегрузки движка надо учитывать только в тех приводах, в которых возможны нарушения нормального технологического процесса с большими внешними усилиями, приложенными к валу. При этом надо учитывать перегрузочную способность электродвигателя. Если защита от перегрузки срабатывает слишком часто, вероятнее всего то, что мощность движка не соответствует назначению. В таких случаях недопустимы ложные срабатывания, которые устраняются правильным выбором и качественной регулировкой компонентов защиты.

Короткие замыкания и защита от перегрузок

Простейшая защита от замыканий содержит только плавкие предохранители. Они применяются в диапазоне мощностей двигателей до 100 кВт. Однако при их использование возможно перегорание не всех трёх предохранителей. Поэтому движок может искусственно оказаться с одной или двумя отключенными фазными обмотками. В зависимости от назначения электропривода существуют разные критерии выбора предохранителей.

Если у привода нагрузка вентиляторного типа, для которой характерен лёгкий пуск, номинальный ток плавкой вставки выбирается не менее 40% от величины пускового тока. Этот критерий применим для металлорежущих станков, вентиляторов, насосов и т.п. у которых переходный процесс длится от двух до пяти секунд. Если время переходного процесса более длительное от десяти до двадцати секунд номинальный ток плавкой вставки должен быть не менее 50% от величины пускового тока. Этот критерий применим для приводов с валом заторможенных нагрузкой. К ним можно отнести дробилки, центрифуги, шаровые мельницы.

Если имеется группа из нескольких электродвигателей, предохранители ставятся на каждый из них и на распределительный щит. На нём в каждой фазе устанавливается предохранитель с номинальным током равным сумме номинальных токов предохранителей всех движков. Если величина пускового тока не известна, а мощность Р асинхронного двигателя менее 100 кВт, можно выбрать приблизительное значение номинального тока I предохранителя таким способом:

  • при напряжении 500 Вольт I =4,5Р ;
  • при напряжении 380 Вольт I =6Р ;
  • при напряжении 220 Вольт I =10,5Р .

Для более точного срабатывания и для всего диапазона мощностей асинхронных двигателей применяются схемы защиты с реле. Такие схемы позволяют учесть токи пуска и торможения и не реагировать на них. Срабатывание реле приводит к выключению магнитного пускателя и обесточиванию двигателя. Эти так называемые «максимальные» реле в зависимости от конструкции имеют катушку, рассчитанную на токи от десятых долей Ампера до сотен Ампер, а так же контакты, отключающие ток в катушке магнитного пускателя.

Погрешность их срабатывания обычно не превышает десяти процентов. Возврат в исходное состояние конструктивно наиболее часто сделан вручную. Типовая схема защиты показана на изображении. РМ – обозначения максимальных реле, Л – обозначение магнитного пускателя.

Максимальные реле также применяются и для защиты от перегрузки. Но при этом в схему вводится реле времени, которое позволяет сделать настройку её без учёта пусковых токов.

Тепловая защита

Тепловое реле является альтернативным способом защиты электродвигателя с определённой инерцией срабатывания. Принцип действия основан на использовании биметаллической пластины, которая нагревается током обмоток двигателя. Деформация пластины приводит к срабатыванию контактов, необходимых для отключения движка.

Надёжность такой защиты зависит от подобия тепловых процессов в реле и в двигателе. Такое возможно только при достаточно длительном перерыве между включениями и выключениями движка. Условия окружающей среды для двигателя и для элементов тепловой защиты должны быть одинаковыми.

Скорость срабатывания тепловых реле тем меньше, чем больше ток, протекающий через нагревательные элементы или же саму пластину в зависимости от конструкции. При больших значениях токов в обмотках асинхронного двигателя подключение выполняется с использованием трансформаторов тока. Существуют модели магнитных пускателей со встроенными в них тепловыми реле.

Основными электрическими параметрами являются

  • номинальное напряжение. Это максимальное напряжение в сети допустимое для использования реле.
  • Номинальный ток, при котором реле работает длительно и не срабатывает при этом.

Тепловая защита не способна реагировать на токи короткого замыкания и недопустимые кратковременные перегрузки. Поэтому её надо использовать совместно хотя бы с плавкими предохранителями.

Более совершенной разновидностью защиты электродвигателя от недопустимого нагрева является схема с использованием специального датчика тепла. Такой тепловой сенсор располагается на самом движке в том или ином месте. Некоторые модели двигателей имеют встроенный биметаллический сенсор – контакт, подключаемый к защите.

Полностью нагруженный асинхронный двигатель, работающий при пониженном напряжении, быстро нагревается. Если в нём есть встроенный тепловой сенсор, сработает тепловая защита. Если такового нет, необходима защита от понижения напряжения. Для этих целей служат реле, которые срабатывают при снижении напряжения и подают сигнал на отключение движка. На схеме ниже это РН .

Восстановление исходного состояния защиты обычно выполняется вручную или автоматически, но с задержкой во времени для каждого двигателя при их группе. Иначе одновременный групповой запуск после восстановления опять-таки может вызвать повторное понижение напряжения в сети и новое отключение.

Специальная защита от пропадания фазы, то есть от работы только на двух фазах ПУЭ предусматривает только в таких приводах, где возможны неприемлемые по своей тяжести последствия. Экономически целесообразно не изготовление и установка такой защиты, а ликвидация причин, приводящих к такому режиму работы.

Самыми последними техническими решениями в построении защиты электродвигателей являются автоматические выключатели с воздушным гашением дуги. Некоторые модели совмещают в себе возможности рубильника, контактора, максимального и теплового реле и выполняют соответствующие защитные функции. В таком автомате контакты размыкаются мощной взведенной пружиной. Освобождение её происходит в зависимости от типа исполнительного элемента — электромагнитного или теплового.

Зашита асинхронных электродвигателей от перегрева традиционно реализуется на основе, тепловой токовой защиты. В подавляющем большинстве двигателей, находящихся в эксплуатации, используется тепловая токовая защита, которая недостаточно точно учитывает фактические температурные режимы работы электродвигателей, а также его температурные постоянные времени.

В косвенной тепловой защите асинхронного электродвигателя включают в цепи питания статорных обмоток асинхронною электродвигателя, а при превышении максимально допустимого тока статора, биметаллические пластины, нагреваясь, отключают питание статора от источника электроэнергии.

Недостатком этого метода является то, что защита реагирует не па температуру нагрева обмоток статора, а на количество выделенного тепла без учета времени работы в зоне перегрузок и реальных условий охлаждения асинхронного электродвигателя. Это не позволяет в полной мере использовать перегрузочную способность электродвигателя и снижает производительность оборудования, работающего в повторно-кратковременном режиме из-за ложных отключений.

Сложность конструкции , недостаточно высокая надежность систем защиты на их основе, привели к созданию тепловой защиты, реагирующей непосредственно на температуру защищаемого объекта. При этом датчики температуры устанавливаются на обмотке двигателя.

Термочувствительные защитные устройства: термисторы, позисторы

В качестве датчиков температуры получили применение термисторы и позисторы - полупроводниковые резисторы, изменяющие свое сопротивление от температуры. . Термисторы представляют собой полупроводниковые резисторы с большим отрицательным ТСК. При увеличении температуры сопротивление термистора уменьшается, что используется для схемы отключения двигателя. Для увеличения крутизны зависимости сопротивления от температуры, термисторы, наклеенные на три фазы, включаются параллельно (рисунок 1).


Рисунок 1 – Зависимость сопротивления позисторов и термисторов от температуры: а – последовательное соединение позисторов; б – параллельное соединение термисторов

Позисторы являются нелинейными резисторами с положительным ТСК. При достижении определенной температуры сопротивление позистора скачкообразно увеличивается на несколько порядков.

Для усиления этого эффекта позисторы разных фаз соединяются последовательно. Характеристика позисторов показана на рисунке.

Защита с помощью позистоpoв является более совершенной. В зависимости от класса изоляции обмоток двигателя берутся позисторы на температуру срабатывания =105, 115, 130, 145 и 160 . Эта температура называется классификационной. Позистор резко меняет сопротивление при температура за время не более 12 с. При сопротивление трёх последовательно включенных позисторов должно быть не более 1650 Ом, при температуре их сопротивление должно быть не менее 4000 Ом.

Гарантийный срок службы позисторов 20000 ч. Конструктивно позистор представляет собой диск диаметром 3.5 мм и толщиной 1 мм, покрытый кремне-органической эмалью, создающей необходимую влагостойкость и электрическую прочность изоляции.

Рассмотрим схему позисторной защиты, показанную на рисунке 2.


Рисунок 2 – Аппарат позисторной защиты с ручным возвратом: а – принципиальная схема; б – схема подключения к двигателю

К контактам 1, 2 схемы (рисунок 2, а) подключаются позисторы, установленные на всех трёх фазах двигателя (рисунок 2, б). Транзисторы VТ1, VT2 включены по схеме триггера Шмидта и работают в ключевом режиме. В цепь коллектора транзистора VT3 оконечного каскада включено выходное реле К, которое воздействует на обмотку пускателя.

При нормальной температуре обмотки двигателя и связанных с ним позисторов сопротивление последних мало. Сопротивление между точками 1-2 схемы также мало, транзистор VT1 закрыт (на базе малый отрицательный потенциал), транзистор VТ2 открыт (большой потенциал). Отрицательный потенциал на коллекторе транзисторе VT3 мал, и он закрыт. При этом ток в обмотке реле К недостаточен для его срабатывания.

При нагреве обмотки двигателя сопротивление позисторов увеличивается, и при определенном значении этого сопротивления отрицательный потенциал точки 3 достигает напряжения срабатывания триггера. Релейный режим триггера обеспечивается эммитерной обратной связью (сопротивление в цепи эммитера VТ1) и коллекторной обратной связью между коллектором VT2 и базой VT1. При срабатывании триггера VТ2 закрывается, а VT3 - открывается. Срабатывает реле К, замыкая цепи сигнализации и размыкая цепь электромагнита пускателя, после чего обмотка статора отключается от напряжения сети.

После охлаждения двигателя его пуск возможен после нажатия кнопки «возврат», при котором триггер возвращается в начальное положение.

В современных электродвигателях позисторы защиты устанавливаются на лобовой части обмоток двигателя. В двигателях прежних разработок позисторы можно приклеивать к лобовой части обмоток.

Достоинства и недостатки термисторной (позисторной) защиты

Термочувствительная защита электродвигателей предпочтительней в тех случаях, когда по току невозможно определить с достаточной точностью температуру электродвигателя. Это касается, прежде всего, электродвигателей с продолжительным периодом запуска, частыми операциями включения и отключения (повторно-кратковременный режим работы) или двигателей с регулируемым числом оборотов (при помощи преобразователей частоты). Термисторная защита эффективна также при сильном загрязнении электродвигателей или выходе из строя системы принудительного охлаждения.

Недостатками термисторной защиты является то, что с термисторами или позисторами выпускаются далеко не все типы электродвигателей. Это особенно касается электродвигателей отечественного производства. Термисторы и позисторы могут устанавливаться в электродвигатели только в условиях стационарных мастерских. Температурная характеристика термистора достаточно инерционна и сильно зависит от температуры окружающей среды и от условий эксплуатации самого электродвигателя.

Термисторная защита требует наличия специального электронного блока: термисторного устройства защиты электродвигателей, теплового или электронного реле перегрузки, в которых находятся блоки настройки и регулировки, а также выходные электромагнитные реле, служащие для отключения катушки пускателя или электромагнитного расцепителя.

Наверно все знают, что различные устройства работают на основе электрических двигателей. Но для чего нужна защита электродвигателей осознает лишь малая часть пользователей. Оказывается они могут сломаться в результате различных непредвиденных ситуаций.

Чтобы избежать проблем с высокими затратами на ремонт, неприятных простоев и дополнительных материальных потерь используются качественные защитные устройства. Далее разберемся в их устройстве и возможностях.

Как создается защита для электродвигателя?

Постепенно рассмотрим основные устройства защиты электродвигателей и особенности их эксплуатации. Но сейчас расскажем об трех уровнях защиты:

  • Внешняя версия защиты для предохранения от короткого замыкания. Обычно относится к разным видам либо представлена в виде реле. Они обладают официальным статусом и обязательны к установке согласно нормам безопасности на территории РФ.
  • Внешняя версия защиты электродвигателей от перегрузки помогает предотвратить опасные повреждения либо критические сбои в процессе работы.
  • Встроенный тип защиты спасет в случае заметного перегрева. И это защитит от критических повреждений либо сбоев в процессе эксплуатации. В этом случае обязательны выключатели внешнего типа иногда применяется реле для перезагрузки.


Из-за чего отказывает электродвигатель?

В процессе эксплуатации иногда появляются непредвиденные ситуации, останавливающие работу двигателя. Из-за этого рекомендуется заранее обеспечить надежную защиту электродвигателя.

Можете ознакомиться с фото защиты электродвигателя различного типа чтобы иметь представление о том, как она выглядит.

Рассмотрим случаи отказа электродвигателей в которых с помощью защиты можно избежать серьезных повреждений:

  • Недостаточный уровень электрического снабжения;
  • Высокий уровень подачи напряжения;
  • Быстрое изменение частоты подачи тока;
  • Неправильный монтаж электродвигателя либо хранения его основных элементов;
  • Увеличение температуры и превышение допустимого значения;
  • Недостаточная подача охлаждения;
  • Повышенный уровень температуры окружающей среды;
  • Пониженный уровень атмосферного давления, если эксплуатация двигателя происходит на увеличенной высоте на основе уровня моря;
  • Увеличенная температура рабочей жидкости;
  • Недопустимая вязкость рабочей жидкости;
  • Двигатель часто выключается и включается;
  • Блокирование работы ротора;
  • Неожиданный обрыв фазы.

Чтобы защита электродвигателей от перегрузки справилась с перечисленными проблемами и смогла защитить основные элементы устройства необходимо использовать вариант на основе автоматического отключения.

Часто для этого используется плавкая версия предохранителя, поскольку она отличается простотой и способна выполнить много функций:

Версия на основе плавкого предохранительного выключателя представлена аварийным выключателем и плавким предохранителем, соединенных на основе общего корпуса. Выключатель позволяет размыкать либо замыкать сеть с помощью механического способа, а плавкий предохранитель создает качественную защиту электродвигателя на основе воздействия электрического тока. Однако выключателем пользуются в основном для процесса сервисного обслуживания, когда необходимо остановить передачу тока.

Плавкие версии предохранителей на основе быстрого срабатывания считаются отличными защитниками от коротких замыканий. Но непродолжительные перегрузки могут привести к поломке предохранителей этого вида. Из-за этого рекомендуется использовать их на основе воздействия незначительного переходного напряжения.

Плавкие предохранители на основе задержки срабатывания способны защитить от перегрузки либо различных коротких замыканий. Обычно они способны выдержать 5-краткое увеличение напряжения в течение 10-15 секунд.

Важно: Автоматические версии выключателей отличаются по уровню тока для срабатывания. Из-за этого лучше использовать выключатель способный выдержать максимальный ток в процессе короткого замыкания, появляющегося на основе данной системы.

Тепловое реле

В различных устройствах используется тепловое реле для защиты двигателя от перегрузок под воздействием тока либо перегрева рабочих элементов. Оно создается с помощью металлических пластин, обладающих различным коэффициентом расширения под воздействием тепла. Обычно его предлагают в связке с магнитными пускателями и автоматической защитой.

Автоматическая защита двигателя

Автоматы для защиты электродвигателей помогают обезопасить обмотку от появления короткого замыкания, защищают от нагрузки либо обрыва любой из фаз. Их всегда используют в качестве первого звена защиты в сети питания мотора. Потом используется магнитный пускатель, если необходимо он дополняется тепловым реле.

Каковы критерии выбора, подходящего автомата:

  • Необходимо учитывать величину рабочего тока электродвигателя;
  • Количество, использующихся обмоток;
  • Возможность автомата справляться с током в результате короткого замыкания. Обычные версии работают на уровне до 6 кА, а лучшие до 50 кА. Стоит учитывать и скорость срабатывания у селективных менее 1 секунды, нормальных меньше 0,1 секунды, быстродействующих около 0,005 секунды;
  • Размеры, поскольку большая часть автоматов можно подключать с помощью шины на основе фиксированного типа;
  • Вид расцепления цепи – обычно применяется тепловой либо электромагнитный способ.


Универсальные блоки защиты

Различные универсальные блоки защиты электродвигателей помогают уберечь двигатель с помощью отключения от напряжения либо блокированием возможности запуска.

Они срабатывают в таких случаях:

  • Проблемы с напряжением, характеризующиеся скачками в сети, обрывами фаз, нарушением чередования либо слипания фаз, перекосом фазного или линейного напряжения;
  • Механической перегруженности;
  • Отсутствие крутящего момента для вала ЭД;
  • Опасных эксплуатационной характеристике изоляции корпуса;
  • Если произошло замыкание на землю.

Хотя защита от понижения напряжения, может быть, организована и другими способами мы рассмотрели основные из них. Теперь у вас есть представление о том зачем необходимо защищать электродвигатель, и как это осуществляется с помощью различных способов.

Фото защиты электродвигателя